Tìm giá trị lớn nhất của: \(\frac{x}{\left(x+2017\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giá trị lớn nhất của A sẽ đạt khi mẫu của phần số A nhỏ nhất .
I x - 2017 I có giá trị nhỏ nhất khi x = 2017
Khi đó I x - 2017 I + 2 = 2
A = 4032 / 2 = 2016
Vậy để biểu thức A đạt giá trị lớn nhất thì x = 2017
GTLN A = 2016
Bài 1 : \(A=\frac{2016}{x^2-2x+2017}\) đạt GTLN khi \(x^2-2x+2017\) đạt GTNN .
\(x^2-2x+2017=x^2-2x+1+2016=\left(x-1\right)^2+2016\Rightarrow GTNN\) của \(x^2-2x+2017\) là \(2016\)
\(\Rightarrow GTLN\) của \(A\) là : \(\frac{2016}{2016}=1\)
Bài 2 :
a ) Đặt \(A=\frac{2}{6x-9x^2-21}.A\) đạt \(GTNN\) Khi \(\frac{1}{A}\) đạt \(GTLN\).
Ta có : \(\frac{1}{A}=\frac{-9x^2+6x-21}{20}=-\frac{9}{20}\left(x-\frac{1}{3}\right)^2-1\le-1\)
Vậy \(Max\left(\frac{1}{A}\right)=-1\Leftrightarrow x=\frac{1}{3}\)
\(\Rightarrow Min_A=-1\Rightarrow x=\frac{1}{3}\)
b ) Đặt \(B=\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)
Ta có : \(B=\left[\left(x-1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-5\right)\right]=\left(x^2-7x+6\right)\left(x^2-7x+10\right)\)
Đặt \(y=x^2-7x+8\Rightarrow B=\left(y+2\right)\left(y-2\right)=y^2-4\ge-4\)
\(Min_B=-4\) khi và chỉ khi \(x^2-7x+8=0\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{array}\right.\)
Ta có:\(|x+2017|+|x-2|\)
\(=|x+2017|+|2-x|\ge|x+2017+2-x|\)
\(\Rightarrow\frac{1}{|x+2017|+|2-x|}\le\frac{1}{2015}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+2017\right).\left(2-x\right)\ge0\)
Tự làm típ nha gợi í có 2 Th là 2 cái lớn hơn hoặc bằng 0 và TH2 là 2 cái nhỏ hơn 0
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x+2017\ge0\\2-x\ge0\end{cases}}\\\hept{\begin{cases}x+2017< 0\\2-x< 0\end{cases}}\end{cases}}\)
Để A có GTLN thì mẫu số phải có GTNN
Áp dụng bất đẳng thức: \(|x|+|y|\ge|x+y|\)
Ta có: \(|x+2017|+|x-2|=|x+2017|+|2-x|\ge|x+2017+2-x|=2019\)
Dấu "=" xảy ra \(\Leftrightarrow xy\ge0\)
\(\Leftrightarrow-2017\le x\le2\)
Vậy GTLN của \(A=\frac{1}{2019}\Leftrightarrow-2017\le x\le2\)
a, \(A=\left|x-2017\right|+\left|2018-x\right|\ge\left|x-2017+2018-x\right|=1\)
Vậy \(Min=1\Leftrightarrow2017\le x\le2018\)
b, \(B=\dfrac{x^2+4+8}{x^2+4}=1+\dfrac{8}{x^2+4}\)
Thấy : \(x^2+4\ge4\)
\(\Rightarrow B=1+\dfrac{8}{x^2+4}\le3\)
Vậy \(Max=3\Leftrightarrow x=0\)
Đặt \(x+2017=t\) với \(t\ne0\)
\(\Rightarrow x=t-2017\)
Ta có \(\frac{t-2017}{t^2}=-\frac{2017}{t^2}+\frac{1}{t}\)
Lại đặt \(y=\frac{1}{t}\) thì chỉ cần tìm GTNN của \(-2017y^2+y\)
Không có GTLN nhé.
Ủa bạn Hoàng Lê Bảo Ngọc, đề đúng mà.
Biểu thức \(-2017y^2+y\) có max chứ làm gì có min?