cho tam giác abc trên tia đối của tia AB lay diem D sao cho AB=AD .Trên tia đối của tia AC lấy điểm E sao cho CA=AE
C/M:tam giác ABC= tam giác EAD
C/M:BC//DE
Giup minh voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD(gt)
AC=AE(gt)
Do đó: ΔABC=ΔADE(hai cạnh góc vuông)
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
BC=DE
=>ΔABC=ΔADE
b: AE=AC
góc EAC=90 độ
=>góc ACE=góc AEC=45 độ
a) Xét △ ABC và △ AED ta có:
AB = AE ( gt )
\(\widehat{A_1}=\widehat{A_2}\) ( đối đỉnh )
AC = AD ( gt )
⇒ △ ABC = △ AED ( c - g - c )
b ) Vi △ ABC = △ AED ( cmt )
⇒ \(\widehat{D}=\widehat{C}\)
Mà 2 góc ở vị trí so le trong nên
⇒ DE // BC
c) Vì △ ABC = △ AED ( cmt )
⇒ BC = ED = \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\) ED
⇒ DN = MC
Xét △ DNA và △ CMA có:
AD = AC ( gt )
\(\widehat{D}=\widehat{C}\)
DN = MC ( cm )
⇒ △ DNA = △ CMA ( c - g - c )
⇒ \(\widehat{DAN}=\widehat{CAM}\)
Do đó: N, A, M thẳng hàng
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
=>ΔABC=ΔADE
b: Xét ΔACE vuông tại A có AC=AE
nên ΔACE vuông cân tại A
góc ABD=góc AEC=45 độ
=>BD//EC
a: Xét ΔABC và ΔDEC có
CA=CD
\(\widehat{ACB}=\widehat{DCE}\)
CB=CE
Do đó:ΔACB=ΔDCE
b: Xét tứ giác ABDE có
C là trung điểm của AD
C là trung điểm của BE
Do đó: ABDE là hình bình hành
Suy ra: AB//DE
c: Xét ΔAMC và ΔDNC có
AM=DN
\(\widehat{MAC}=\widehat{NDC}\)
AC=DC
Do đó: ΔAMC=ΔDNC
d: Xét tứ giác AMDN có
AM//DN
AM=DN
Do đó: AMDN là hình bình hành
Suy ra: Hai đường chéo AD và MN cắt nhau tại trung điểm của mỗi đường
mà C là trung điểm của AD
nên C là trung điểm của MN
https://hoc24.vn/cau-hoi/1cho-tam-giac-abc-co-2-duong-trung-tuyen-bm-va-cn-cat-nhau-tai-g-chung-minh-bm-cn-dfrac32bc2cho-tam-giac-abc-d-la-trung-diem-ac-tren-bd-lay-e-sao-cho-be2ed-f-thuoc-tia-doi-cua-tia.5863553679489
trl câu này hộ mik với chiều nay cần dùng r
Ừ, biết là cho tam giác rồi. Nhưng làm gì với tam giác đó ? Chơi với nó à ?
k có câu hỏi à p