K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

Bài 1 :
a) =) \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)\(1-\frac{1}{101}=\frac{100}{101}\)
b) =) \(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
=) \(\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)( theo phần a)
Bài 2 :
-Gọi d là UCLN \(\left(2n+1;3n+2\right)\)( d \(\in N\)* )
(=) \(2n+1⋮d\left(=\right)3.\left(2n+1\right)⋮d\)
(=) \(6n+3⋮d\)
và \(3n+2⋮d\left(=\right)2.\left(3n+2\right)⋮d\)
(=) \(6n+4⋮d\)
(=) \(\left(6n+4\right)-\left(6n+3\right)⋮d\)
(=) \(6n+4-6n-3⋮d\)
(=) \(1⋮d\left(=\right)d\in UC\left(1\right)\)(=) d = { 1;-1}
Vì d là UCLN\(\left(2n+1;3n+2\right)\)(=) \(d=1\)(=) \(\frac{2n+1}{3n+2}\)là phân số tối giản ( đpcm )
Bài 3 :
-Để A \(\in Z\)(=) \(n+2⋮n-5\)
Vì \(n-5⋮n-5\)
(=) \(\left(n+2\right)-\left(n-5\right)⋮n-5\)
(=) \(n+2-n+5⋮n-5\)
(=) \(7⋮n-5\)(=) \(n-5\in UC\left(7\right)\)= { 1;-1;7;-7}
(=) n = { 6;4;12;-2}
Vậy n = {6;4;12;-2} thì A \(\in Z\)
Bài 4:
A = \(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
\(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{111111}\right)\)
\(10101.\left(\frac{1}{111111}+\frac{5}{222222}\right)\)\(10101.\left(\frac{2}{222222}+\frac{5}{222222}\right)\)
\(10101.\frac{7}{222222}\)( không cần rút gọn \(\frac{7}{222222}\))
\(\frac{7}{22}\)

12 tháng 3 2018

a, \(ĐK:\text{ }n-2\ne0\Leftrightarrow n\ne2\)

b, \(A=\frac{3}{n-2};\text{ }n=-2\)

\(\Rightarrow A=\frac{3}{-2-2}=\frac{3}{-4}\)

\(A=\frac{3}{n-2}\text{; }n=0\)

\(\Rightarrow A=\frac{3}{0-2}=\frac{3}{-2}\)

\(A=\frac{3}{n-2};\text{ }n=5\)

\(\Rightarrow A=\frac{3}{5-2}=\frac{3}{3}=1\)

c, \(A=\frac{3}{n-2}=1\Leftrightarrow n-2=\frac{3}{1}\)

                                     \(\Rightarrow n-2=3\)

                                     \(\Rightarrow n=3+2\)

                                     \(\Rightarrow n=5\)

\(A=\frac{3}{n-2}=\frac{1}{2}\Leftrightarrow n-2=3:\frac{1}{2}\)

                                    \(\Rightarrow n-2=6\)

                                    \(\Rightarrow n=6+2\)

                                    \(\Rightarrow n=8\)

d, \(A\inℤ\text{ }\Leftrightarrow\text{ }3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)\)

\(\Rightarrow n-2\in\left\{-1;1;-3;3\right\}\)

\(\Rightarrow n\in\left\{1;3;-1;5\right\}\)

12 tháng 3 2018

a)để A là phân số thì n-2 phải khác 0 =>n phải khác 2

b)+)n=-2

=>A=\(\frac{3}{-2-2}\)=\(\frac{3}{-4}\)

+)n=0

=>A=\(\frac{3}{0-2}=\frac{3}{-2}\)

+)n=5

=>A=\(\frac{3}{5-2}=\frac{3}{3}=1\)

c) theo như kết quả phần b thì để A=1 thì n phải =5

để A=\(\frac{1}{2}\)thì \(\frac{3}{n-2}=\frac{1}{2}\)=>\(\frac{3}{n-2}=\frac{3}{6}\)=>n-2=6=>n=6+2=>n=8

để A thuộc Z thì n-2 phải <0 =>n phải bé hơn 2 để n thuộc Z

16 tháng 1 2018

Tham khảo nè:

1/2^2 + 1/3^2 + 1/4^2 + ... + 1/n^2 < 2/3 chứng minh

 k² > k² - 1 = (k-1)(k+1) 
⇒ 1/k² < 1/[(k-1).(k+1)] = [1/(k-1) - 1/(k+1)]/2 (*) 

Áp dụng (*), ta có: 
1/2² + 1/3² + 1/4² + ... + 1/n² 
< 1/2² + 1/(2.4) + 1/(3.5) + ... + 1/[(n-1).(n+1)] 
= 1/2² + [1/2 - 1/4 + 1/3 - 1/5 + ... + 1/(n-1) - 1/(n+1)]/2 
= 1/2² + [1/2 + 1/3 - 1/n - 1/(n+1)]/2 
= 2/3 - [1/n + 1/(n+1)]/2 < 2/3

8 tháng 2 2020

a) -25.21.(-2)2.(-/-3/).(-1)2n+!

= -25.21.4.(-3).( -1 )

= ( -25.4 ).( -3.21 ).( -1 )

= -100.( -63 ).( -1 )

= -6300

b) ( -5 )3.67.(-/-23/).( -1 )2n

= -15.67.8.1

= -8040

Mk ko chắc ! ~HỌC TỐT~