cho tam giác abc cân tại a các đường thẳng qua B vuông góc với AB và C vuông góc với AC cắt nhau tại S
chứng minh tam giác SBC cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
b) Xét ΔDHB vuông tại D và ΔEHC vuông tại E có
HB=HC(ΔAHB=ΔAHC)
\(\widehat{DBH}=\widehat{ECH}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDHB=ΔEHC(cạnh huyền-góc nhọn)
nên \(\widehat{DHB}=\widehat{EHC}\)(hai góc tương ứng)
mà \(\widehat{DHB}=\widehat{FHC}\)(hai góc đối đỉnh)
nên \(\widehat{EHC}=\widehat{FHC}\)
mà tia HC nằm giữa hai tia HE,HF
nên HC là tia phân giác của \(\widehat{EHF}\)(đpcm)
a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :
Góc AHC = góc BAC = 90o; góc C chung
=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)
b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144
=> \(AB=\sqrt{144}=12\left(cm\right)\)
Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')
=> Góc BIH = góc ADB
Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB
=> Tam giác AID cân tại A
d) ('Mình ko biết')
a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :
Góc AHC = góc BAC = 90o; góc C chung
=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)
b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144
=> \(AB=\sqrt{144}=12\left(cm\right)\)
Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')
=> Góc BIH = góc ADB
Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB
=> Tam giác AID cân tại A