ho biết rằng a>b chứng tỏ rằng 2019-a<2020-b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có a < b \(\Rightarrow-5a>-5b\) ( nhân cả 2 vế với -5 )
lại có \(-5a-2019>-5b-2019\) ( trừ cả 2 vế với 2019 )
Ko thể dùng 1 trường hợp cụ thể để chứng minh dạng tổng quát.
Cách chứng minh bài này rất đơn giản:
\(a< b\Rightarrow2019a< 2019b\)
\(\Rightarrow-2019a>-2019b\)
\(\Rightarrow-2019a+2020>-2019b+2020>-2019b+2018\)
Vậy \(2020-2019a>2018-2019b\)
a) \(2\left(\dfrac{2}{3.5}+\dfrac{4}{5.9}+...+\dfrac{16}{n\left(n+16\right)}\right)=\dfrac{16}{25}\)
\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{n}-\dfrac{1}{n+16}=\dfrac{8}{25}\)
\(\dfrac{1}{3}-\dfrac{1}{n+16}=\dfrac{8}{25}\)
\(\dfrac{n+13}{3\left(n+16\right)}=\dfrac{8}{25}\)
\(24n+384=25n+325\)
\(25n-24n=384-325\)
\(n=59\)