giúp giúp giúp\(\hept{\begin{cases}\left(1-y\right)\sqrt{x^2+2y^2}=x+2y+3xy\\\sqrt{y+1}+\sqrt{x^2+2y^2}=2y-x\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^3-3x^2y-4x^2+4y^3+16xy=16y^2\Leftrightarrow x^3-3x^2y-4x^2+4y^3+16xy-16y^2=0\)
đưa về phương trình tích : \(\left(x-2y\right)^2\left(x+y-4\right)=0\) tới đây ok chưa
3) ĐK : x \(\ge\)0 ; \(y\ge3\)\(\Rightarrow x+y>0\)
đặt \(\sqrt{x+y}=a;\sqrt{x+3}=b\)
\(\Rightarrow y-3=\left(x+y\right)-\left(x+3\right)=a^2-b^2\)
PT : \(\sqrt{x+y}+\sqrt{x+3}=\frac{1}{3}\left(y-3\right)\Leftrightarrow3\sqrt{x+y}+3\sqrt{x+3}=y-3\)
\(\Leftrightarrow3\left(a+b\right)=a^2-b^2\Leftrightarrow\left(a+b\right)\left(3-a+b\right)=0\Leftrightarrow\orbr{\begin{cases}a+b=0\\a-b=3\end{cases}}\)
Mà a + b = \(\sqrt{x+y}+\sqrt{x+3}>0\)nên loại
a - b = 3 thì \(\sqrt{x+y}-\sqrt{x+3}=3\), ta có HPT : \(\hept{\begin{cases}\sqrt{x+y}-\sqrt{x+3}=3\\\sqrt{x+y}+\sqrt{x}=x+3\end{cases}}\)
\(\Rightarrow\)\(\sqrt{x}+\sqrt{x+3}=x\Leftrightarrow\sqrt{x+3}=x-\sqrt{x}\Leftrightarrow x^2-2x\sqrt{x}-3=0\Leftrightarrow x=\left(1+\sqrt[3]{2}\right)^2\)
từ đó tìm đc y
1,\(x^2-2y^2-xy=0\)
<=> \(\left(x-2y\right)\left(x+y\right)=0\)
<=> \(\orbr{\begin{cases}x=2y\\x=-y\end{cases}}\)
Sau đó bạn thế vào PT dưới rồi tính
3. ĐKXĐ \(x\le1\); \(x+2y+3\ge0\)
.\(2y^3-\left(x+4\right)y^2+8y+x^2-4x=0\)
<=> \(\left(2y^3-xy^2\right)+\left(x^2-4y^2\right)-\left(4x-8y\right)=0\)
<=> \(\left(x-2y\right)\left(-y^2+x+2y-4\right)=0\)
Mà \(-y^2+2y-4=-\left(y-1\right)^2-3\le-3\); \(x\le1\)nên \(-y^2+x+2y-4< 0\)
=> \(x=2y\)
Thế vào Pt còn lại ta được
\(\sqrt{\frac{1-x}{2}}+\sqrt{2x+3}=\sqrt{5}\)ĐK \(-\frac{3}{2}\le x\le1\)
<=> \(\frac{1-x}{2}+2x+3+2\sqrt{\frac{\left(1-x\right)\left(2x+3\right)}{2}}=5\)
<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}x+\frac{3}{2}\)
<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}\left(x-1\right)\)
<=> \(\orbr{\begin{cases}x=1\\\sqrt{2\left(2x+3\right)}=\frac{3}{2}\sqrt{1-x}\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=-\frac{3}{5}\end{cases}}\)(TMĐK )
Vậy \(\left(x;y\right)=\left(1;\frac{1}{2}\right),\left(-\frac{3}{5};-\frac{3}{10}\right)\)
\(1,\hept{\begin{cases}x\left(x+y+1\right)=3\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{cases}\left(ĐKXĐ:x\ne0\right)}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=\frac{3}{x}-1\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{cases}}\)
\(\Rightarrow\left(\frac{3}{x}-1\right)^2-\frac{5}{x^2}=-1\)
Đặt \(\frac{1}{x}=a\left(a\ne0\right)\)
\(\Rightarrow\left(3a-1\right)^2-5a^2=-1\)
\(\Leftrightarrow9a^2-6a+1-5a^2+1=0\)
\(\Leftrightarrow4a^2-6a+2=0\)
Làm nốt
2, ĐKXĐ \(x\ge1,y\ge0\)
\(\hept{\begin{cases}xy+x+y=x^2-2y^2\left(1\right)\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\left(2\right)\end{cases}}\)
Pt (1) <=> \(xy+x+y+y^2=x^2-y^2\)
<=> \(y\left(x+y\right)+x+y=\left(x-y\right)\left(x+y\right)\)
<=> \(\left(x+y\right)\left(y+1\right)=\left(x-y\right)\left(x+y\right)\)
<=> \(\left(x+y\right)\left(2y+1-x\right)=0\)
Mà \(x\ge1,y\ge0\) => \(x+y>0\) => \(2y+1-x=0\)<=> \(x=2y+1\)
Thay x=2y+1 vào (2)
Đoạn này bn tự giải tiếp nhé
\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)
\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)
\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)
\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)
\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)
Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)
DK \(\hept{\begin{cases}x\ge1\\y\ge1\end{cases}}\)
TH x=y=1 thay vao ta thay thoa man vay {x;y}={1;1} la 1 nghiem
TH x,y khac 1
Xet phuong trinh (1)
\(\sqrt{x-1}+\sqrt{x}\left(3\sqrt{x}-y\right)+x\sqrt{x}=3y+\sqrt{y-1}\)
<=> \(\left(\sqrt{x-1}-\sqrt{y-1}\right)+3x-3y+x\sqrt{x}-y\sqrt{x}=0\)
<=> \(\frac{\left(x-1\right)-\left(y-1\right)}{\sqrt{x-1}+\sqrt{y-1}}+3\left(x-y\right)+\sqrt{x}\left(x-y\right)=0\)
<=> \(\left(x-y\right)\left(\frac{1}{\sqrt{x-1}+\sqrt{y-1}}+3+\sqrt{x}\right)=0\)
<=> x=y ( do cai trong ngoac thu 2 vo nghiem)
the x=y vao phuong trinh (2) duoc
\(3x^3+4=4x^2+3x\)
<=> \(3x^3-4x^2-3x+4=0\)
<=> \(\left(x-1\right)\left(x+1\right)\left(3x-4\right)=0\)
<=> \(\orbr{\begin{cases}x=y=\pm1\\x=y=\frac{4}{3}\end{cases}}\)
Vay {x;y} =....