Tìm y
5/6 x y =1/4 + 2/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
1)\(\left(x+1\right).\left(y-2\right)=0\) \(\left(x,y\inℤ\right)\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}\)
2)\(\left(x-5\right).\left(y-7\right)=1\)
x-5 | 1 | -1 |
y-7 | 1 | -1 |
x | 6 | 4 |
y | 8 | 6 |
3)\(\left(x+4\right).\left(y-2\right)=2\)
x+4 | 1 | 2 | -1 | -2 |
y-2 | 2 | 1 | -2 | -1 |
x | -3 | -2 | -5 | -6 |
y | 4 | 3 | 0 | 1 |
4)\(\left(x-4\right).\left(y+3\right)=-3\)
x-4 | 1 | -1 | 3 | -3 |
y+3 | -3 | 3 | -1 | 1 |
x | 5 | 3 | 7 | 1 |
y | -6 | 0 | -4 | -2 |
5)\(\left(x+3\right).\left(y-6\right)=-4\)
x+3 | -1 | 1 | -4 | 4 | 2 | -2 |
y-6 | 4 | -4 | 1 | -1 | -2 | 2 |
x | -4 | -2 | -7 | 1 | -1 | -5 |
y | 10 | 2 | 7 | 5 | 4 | 8 |
6)\(\left(x-8\right).\left(y+7\right)=5\)
x-8 | 1 | 5 | -1 | -5 |
y+7 | 5 | 1 | -5 | -1 |
x | 9 | 13 | 7 | 3 |
y | -2 | -6 | -12 | -8 |
7)\(\left(x+7\right).\left(y-3\right)=-6\)
x+7 | -1 | 1 | -6 | 6 | -2 | 2 | -3 | 3 |
y-3 | 6 | -6 | 1 | -1 | 3 | -3 | 2 | -2 |
x | -8 | -6 | -13 | -1 | -9 | -5 | -10 | -4 |
y | 9 | -3 | 4 | 2 | 6 | 0 | 5 | 1 |
8)\(\left(x-6\right).\left(y+2\right)=7\)
x-6 | 1 | 7 | -1 | -7 |
y+2 | 7 | 1 | -7 | -1 |
x | 7 | 13 | 5 | -1 |
y | 5 | -1 | -9 | -3 |
ok :)
2:
a: 5/x-y/3=1/6
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)
=>30-2xy=x
=>x(2y+1)=30
=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}
=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}
b: x/6-2/y=1/30
=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)
=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)
=>5xy-60=y
=>y(5x-1)=60
=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)
=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}
1/ (x+1)(y+2) =5
Do x;y thuộc N nên x+1 ; y+2 cũng thuộc N
\(TH1:\Leftrightarrow\hept{\begin{cases}x+1=1\\y+2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1-1\\y=5-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=3\end{cases}}}\\\)
\(TH2:\Leftrightarrow\hept{\begin{cases}x+1=5\\y+2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5-1\\y=1-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=-1\end{cases}}}\)
x | 0 | 4 |
y | 3 | -1 |
mà x;y\(\in\)N nên x;y=0;3
Các bài khác bạn làm tương tự nha! (vì mk viết rất chậm )
a) y = 5/14 : 6/7
y = 5/12
vậy y = 5/12
b) y = 4/9 x 2/3
y = 8/27
vậy t = 8/27
c) y = 1/2 - 3/10
y = 1/5
vậy y = 1/5
d) y = 5/6 - 1/3
y = 1/2
vậy y = 1/2
\(B=\left(x^2+1\right)\left(y^2+1\right)-\left(x-4\right)\left(x+4\right)-\left(y-5\right)\left(y+5\right)\\ B=x^2y^2+x^2+y^2+1-x^2+16-y^2+25\\ B=x^2y^2+41\ge41\)
Dấu "=" xảy ra khi \(x^2y^2\Leftrightarrow x=y=0\)
Vậy \(MaxB=41\Leftrightarrow x=y=0\)
\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\\ A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\\ A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\\ A=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi
\(\left(x^2+5x\right)^2=0\\ \Leftrightarrow x\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(MaxA=-36\Leftrightarrow x\in\left\{0;-5\right\}\)
5/6 . y = 1/4 + 2/3
5/6 . y = 11/12
y = 11/12 : 5/6
y=11/10
5/6 . y = 1/4 + 2/3
5/6 . y = 11/12
y = 11/12 : 5/6
y=11/10