1/3+1/32+.....+1/32018so sánh với 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{1}{32}+\frac{1}{33}+.....+\frac{1}{89}+\frac{1}{90}>0\)
Mà\(1>\frac{2}{3}\)
=>\(1+\frac{1}{31}+\frac{1}{32}+.....+\frac{1}{90}>0+\frac{2}{3}\)
=>\(1+\frac{1}{31}+\frac{1}{32}+....+\frac{1}{90}>\frac{2}{3}\)
Vậy......
A= \(\frac{3\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{\left(2^2-1\right)}=2^{32-1}\)
mà B= \(2^{32}\)
=> A<B
Ta có:
\(3^{32}-1=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow A< B\)
A = 1/3 + 1/32 + ...................+ 1/32018
3x A = 1 + 1/3 + 1/32 +...+1/32017
3A - A = 1 - 1/32018
2A = 1- 1/32018 < 1
⇔ A < \(\dfrac{1}{2}\)