Tìm y biết:
yx5+y:1/2+y:1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{y\left(y+1\right)}\) + \(\frac{1}{\left(y+1\right)\left(y+2\right)}\) + \(\frac{1}{\left(y+2\right)\left(y+3\right)}\) + \(\frac{1}{\left(y+3\right)\left(y+4\right)}\)= \(\frac{1}{15}\)
\(\frac{1}{y}\) - \(\frac{1}{y+1}\) + \(\frac{1}{y+1}\) - \(\frac{1}{y+2}\) + \(\frac{1}{y+2}\) - \(\frac{1}{y+3}\) + \(\frac{1}{y+3}\) - \(\frac{1}{y+4}\) = \(\frac{1}{15}\)
\(\frac{1}{y}\) + \(\frac{1}{y+1}\) - \(\frac{1}{y+1}\) + \(\frac{1}{y+2}\) - \(\frac{1}{y+2}\) + \(\frac{1}{y+3}\) - \(\frac{1}{y+3}\) - \(\frac{1}{y+4}\) = \(\frac{1}{15}\)
\(\frac{1}{y}\) - \(\frac{1}{y+4}\) = \(\frac{1}{15}\)
\(\frac{4}{y\left(y+4\right)}\) = \(\frac{1}{15}\) => \(\frac{4}{y\left(y+4\right)}\)= \(\frac{4}{60}\)
=> y(y+4)=60 Mà 60 = 1.60=2.30=3.20=4.15=5.12=6.10
Vậy y(y+4)=6.10 => y=6. Vậy y=6
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
`a)TXĐ: R`
`b)TXĐ: R\\{0}`
`c)TXĐ: R\\{1}`
`d)TXĐ: (-oo;-1)uu(1;+oo)`
`e)TXĐ: (-oo;-1/2)uu(1/2;+oo)`
`f)TXĐ: (-oo;-\sqrt{2})uu(\sqrt{2};+oo)`
`h)TXĐ: (-oo;0) uu(2;+oo)`
`k)TXĐ: R\\{1/2}`
`l)ĐK: {(x^2-1 > 0),(x-2 > 0),(x-1 ne 0):}`
`<=>{([(x > 1),(x < -1):}),(x > 2),(x ne 1):}`
`<=>x > 2`
`=>TXĐ: (2;+oo)`
câu l) $x^2-1 > 0$ thì giải ra 2 nghiệm $x < -1, x > 1$ mới đúng chứ nhỉ?
a) \(\left(x+y+1\right)^3=x^3+y^3+7\)
\(\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)
\(\Leftrightarrow3\left(x+y\right)\left(x+y+xy+1\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left[x\left(1+y\right)+1+y\right]=2\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(x+y\right)=2\)
\(\Rightarrow x+1,y+1,x+y\) là các ước của 2.
Ta thấy 6 có 2 dạng phân tích thành tích 3 số nguyên là \(\left(2;1;1\right)\) và\(\left(2;-1;-1\right)\).
- Xét trường hợp \(\left(2;1;1\right)\). Ta có 3 trường hợp nhỏ:
\(\left\{{}\begin{matrix}x+1=2\\y+1=1\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=2\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=1\\x+y=2\end{matrix}\right.\)
Giải ra ta có \(\left(x,y\right)=\left(1;0\right),\left(0;1\right)\).
- Xét trường hợp \(\left(2;-1;-1\right)\). Ta có 3 trường hợp nhỏ:
\(\left\{{}\begin{matrix}x+1=2\\y+1=-1\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=2\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=1\\x+y=2\end{matrix}\right.\).
Giải ra ta có: \(\left(x;y\right)=\left(1;-2\right),\left(-2;1\right)\).
Vậy \(\left(x;y\right)=\left(0;1\right),\left(1;0\right),\left(1;-2\right),\left(-2;1\right)\)
b) \(y^2+2xy-8x^2-5x=2\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(9x^2+5x\right)=2\)
\(\Leftrightarrow\left(x+y\right)^2-9\left(x^2+\dfrac{5}{9}x+\dfrac{25}{324}\right)+\dfrac{25}{36}=2\)
\(\Leftrightarrow\left(x+y\right)^2-9\left(x+\dfrac{5}{18}\right)^2=\dfrac{47}{36}\)
\(\Leftrightarrow6^2.\left(x+y\right)^2-3^2.6^2\left(x+\dfrac{5}{18}\right)^2=47\)
\(\Leftrightarrow\left(6x+6y\right)^2-\left(18x+5\right)^2=47\)
\(\Leftrightarrow\left(6x+6y-18x-5\right)\left(6x+6y+18x+5\right)=47\)
\(\Leftrightarrow\left(6y-12x-5\right)\left(24x+6y+5\right)=47\)
\(\Rightarrow\)6y-12x-5 và 24x+6y+5 là các ước của 47.
Lập bảng:
6y-12x-5 | 1 | 47 | -1 | -47 |
24x+6y+5 | 47 | 1 | -47 | -1 |
x | 1 | \(\dfrac{-14}{9}\left(l\right)\) | \(\dfrac{-14}{9}\left(l\right)\) | 1 |
y | 3 | \(\dfrac{50}{9}\left(l\right)\) | \(-\dfrac{22}{9}\left(l\right)\) | -5 |
Vậy pt đã cho có 2 nghiệm (x;y) nguyên là (1;3) và (1;-5)
a)\(\frac{x}{2}-\frac{2}{y}=\frac{1}{2}\)
=> \(\frac{2}{y}=\frac{x}{2}-\frac{1}{2}\)
=> \(\frac{2}{y}=\frac{x-1}{2}\)
=> \(y\left(x-1\right)=4\)
Vì x,y \(\inℕ\)nên x - 1 \(\inℕ\)=> y và x - 1 thuộc Ư(4)
Ta có : Ư(4) = {1;2;4}
Lập bảng :
y | 1 | 2 | 4 |
x - 1 | 4 | 2 | 1 |
x | 5 | 3 | 2 |
Vậy \(\left(x,y\right)\in\left\{\left(5,1\right);\left(3,2\right);\left(2,4\right)\right\}\)
b) \(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
=> \(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)
=> \(\frac{5}{x}=\frac{1}{6}+\frac{2y}{6}\)
=> \(\frac{5}{x}=\frac{1+2y}{6}\)
=> \(x\left(1+2y\right)=30\)
Vì x,y thuộc N nên 1 + 2y thuộc N => x và 1 + 2y thuộc Ư(30)
Ta có : Ư(30) = {1;2;3;5;6;10;15;30}
Lập bảng :
x | 1 | 2 | 3 | 5 | 6 | 10 | 15 | 30 |
1 + 2y | 30 | 15 | 10 | 6 | 5 | 3 | 2 | 1 |
2y | 29 | 14 | 9 | 5 | 4 | 2 | 1 | 0 |
y | loại | 7 | loại | loại | 2 | 1 | loại | 0 |
Vậy : \(\left(x,y\right)\in\left\{\left(2,7\right);\left(6,2\right);\left(30,0\right)\right\}\)
c) Làm nốt
y.5 + y : 1/2 + y : 1/3
= y.5 + y.2 + y.3
= y.(5 + 2 + 3)
= y.10
y x 5 + y : 1/2 + y : 1/3
= y x 5 + y x 2/1 + y x 3/1
= y x 5 + y x 2 + y x 3
= y x ( 5 + 2 + 3 )
= y x 10
Bạn phải cho giá trị của biểu thức mới làm được chứ