K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

y.5 + y : 1/2 + y : 1/3 

= y.5 + y.2 + y.3

= y.(5 + 2 + 3)

= y.10 

2 tháng 1 2017

y x 5 + y : 1/2 + y : 1/3

= y x 5 + y x 2/1 + y x 3/1

= y x 5 + y x 2 + y x 3

= y x ( 5 + 2 + 3 )

= y x 10

Bạn phải cho giá trị của biểu thức mới làm được chứ

15 tháng 3 2016
 

\(\frac{1}{y\left(y+1\right)}\) + \(\frac{1}{\left(y+1\right)\left(y+2\right)}\) + \(\frac{1}{\left(y+2\right)\left(y+3\right)}\) + \(\frac{1}{\left(y+3\right)\left(y+4\right)}\)\(\frac{1}{15}\)

\(\frac{1}{y}\) - \(\frac{1}{y+1}\) + \(\frac{1}{y+1}\) - \(\frac{1}{y+2}\) + \(\frac{1}{y+2}\) - \(\frac{1}{y+3}\) + \(\frac{1}{y+3}\) - \(\frac{1}{y+4}\) = \(\frac{1}{15}\) 

\(\frac{1}{y}\) + \(\frac{1}{y+1}\) - \(\frac{1}{y+1}\) + \(\frac{1}{y+2}\) - \(\frac{1}{y+2}\) + \(\frac{1}{y+3}\) - \(\frac{1}{y+3}\) - \(\frac{1}{y+4}\) = \(\frac{1}{15}\)

\(\frac{1}{y}\) - \(\frac{1}{y+4}\) = \(\frac{1}{15}\)

\(\frac{4}{y\left(y+4\right)}\) = \(\frac{1}{15}\) => \(\frac{4}{y\left(y+4\right)}\)\(\frac{4}{60}\)

=> y(y+4)=60 Mà 60 = 1.60=2.30=3.20=4.15=5.12=6.10

Vậy y(y+4)=6.10 => y=6. Vậy y=6

10 tháng 2 2016

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

24 tháng 3 2021

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

Bài 2: 

a: =>x=0 hoặc x+3=0

=>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

18 tháng 11 2023

`a)TXĐ: R`

`b)TXĐ: R\\{0}`

`c)TXĐ: R\\{1}`

`d)TXĐ: (-oo;-1)uu(1;+oo)`

`e)TXĐ: (-oo;-1/2)uu(1/2;+oo)`

`f)TXĐ: (-oo;-\sqrt{2})uu(\sqrt{2};+oo)`

`h)TXĐ: (-oo;0) uu(2;+oo)`

`k)TXĐ: R\\{1/2}`

`l)ĐK: {(x^2-1 > 0),(x-2 > 0),(x-1 ne 0):}`

`<=>{([(x > 1),(x < -1):}),(x > 2),(x ne 1):}`

`<=>x > 2`

   `=>TXĐ: (2;+oo)`

18 tháng 11 2023

câu l) $x^2-1 > 0$ thì giải ra 2 nghiệm $x < -1, x > 1$ mới đúng chứ nhỉ?

9 tháng 2 2023

a) \(\left(x+y+1\right)^3=x^3+y^3+7\)

\(\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)

\(\Leftrightarrow3\left(x+y\right)\left(x+y+xy+1\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left[x\left(1+y\right)+1+y\right]=2\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(x+y\right)=2\)

\(\Rightarrow x+1,y+1,x+y\) là các ước của 2.

Ta thấy 6 có 2 dạng phân tích thành tích 3 số nguyên là \(\left(2;1;1\right)\) và\(\left(2;-1;-1\right)\).

- Xét trường hợp \(\left(2;1;1\right)\). Ta có 3 trường hợp nhỏ:

\(\left\{{}\begin{matrix}x+1=2\\y+1=1\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=2\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=1\\x+y=2\end{matrix}\right.\)

Giải ra ta có \(\left(x,y\right)=\left(1;0\right),\left(0;1\right)\).

- Xét trường hợp \(\left(2;-1;-1\right)\). Ta có 3 trường hợp nhỏ:

\(\left\{{}\begin{matrix}x+1=2\\y+1=-1\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=2\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=1\\x+y=2\end{matrix}\right.\).

Giải ra ta có: \(\left(x;y\right)=\left(1;-2\right),\left(-2;1\right)\).

Vậy \(\left(x;y\right)=\left(0;1\right),\left(1;0\right),\left(1;-2\right),\left(-2;1\right)\)

 

 

9 tháng 2 2023

b) \(y^2+2xy-8x^2-5x=2\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(9x^2+5x\right)=2\)

\(\Leftrightarrow\left(x+y\right)^2-9\left(x^2+\dfrac{5}{9}x+\dfrac{25}{324}\right)+\dfrac{25}{36}=2\)

\(\Leftrightarrow\left(x+y\right)^2-9\left(x+\dfrac{5}{18}\right)^2=\dfrac{47}{36}\)

\(\Leftrightarrow6^2.\left(x+y\right)^2-3^2.6^2\left(x+\dfrac{5}{18}\right)^2=47\)

\(\Leftrightarrow\left(6x+6y\right)^2-\left(18x+5\right)^2=47\)

\(\Leftrightarrow\left(6x+6y-18x-5\right)\left(6x+6y+18x+5\right)=47\)

\(\Leftrightarrow\left(6y-12x-5\right)\left(24x+6y+5\right)=47\)

\(\Rightarrow\)6y-12x-5 và 24x+6y+5 là các ước của 47.

Lập bảng:

6y-12x-5147-1-47
24x+6y+5471-47-1
x1\(\dfrac{-14}{9}\left(l\right)\)\(\dfrac{-14}{9}\left(l\right)\)1
y3\(\dfrac{50}{9}\left(l\right)\)\(-\dfrac{22}{9}\left(l\right)\)-5

Vậy pt đã cho có 2 nghiệm (x;y) nguyên là (1;3) và (1;-5)

 

9 tháng 2 2020

a)\(\frac{x}{2}-\frac{2}{y}=\frac{1}{2}\)

=> \(\frac{2}{y}=\frac{x}{2}-\frac{1}{2}\)

=> \(\frac{2}{y}=\frac{x-1}{2}\)

=> \(y\left(x-1\right)=4\)

Vì x,y \(\inℕ\)nên x - 1 \(\inℕ\)=> y và x - 1 thuộc Ư(4) 

Ta có : Ư(4) = {1;2;4}

Lập bảng :

y124
x - 1421
x532

Vậy \(\left(x,y\right)\in\left\{\left(5,1\right);\left(3,2\right);\left(2,4\right)\right\}\)

b) \(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)

=> \(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)

=> \(\frac{5}{x}=\frac{1}{6}+\frac{2y}{6}\)

=> \(\frac{5}{x}=\frac{1+2y}{6}\)

=> \(x\left(1+2y\right)=30\)

Vì x,y thuộc N nên 1 + 2y thuộc N => x và 1 + 2y thuộc Ư(30)

Ta có : Ư(30) = {1;2;3;5;6;10;15;30}

Lập bảng :

x12356101530
1 + 2y30151065321
2y2914954210
yloại7loạiloại21loại0

Vậy : \(\left(x,y\right)\in\left\{\left(2,7\right);\left(6,2\right);\left(30,0\right)\right\}\)

c) Làm nốt