Giải thích tại sao thích A = 1 x 2 x 3 x 4 x ... x 47 x 48 x 49 chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, NXét: Dãy số là dãy liên tiếp từ 1 đến 49 >> kiểu gì cx có số 10 >> chia hết cho 10
b, méo hiểu đề ???
Do x là số tự nhiên => 2x + 13 > x + 2
=> 3a > 3b
\(\Rightarrow3^a⋮3^b\Leftrightarrow\left(2x+13\right)⋮\left(x+2\right)\)
\(\RightarrowĐPCM\)
1) \(3^x+3^{x+1}+3^{x+2}=351\)
\(\Rightarrow3^x\left(1+3^1+3^2\right)=351\)
\(\Rightarrow3^x.13=351\)
\(\Rightarrow3^x=27\)
\(\Rightarrow3^x=3^3\)
\(\Rightarrow x=3\)
2) \(C=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(\Rightarrow C=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)...+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(\Rightarrow C=30+2^4.30...+2^{96}.30\)
\(\Rightarrow C=\left(1+2^4+...+2^{96}\right).30⋮30\)
mà \(30=5.6\)
\(\Rightarrow C⋮5\left(dpcm\right)\)
1,
Có \(3^x\)+ \(3^{x+1}\) + \(3^{x+2}\) = \(351\)
=> \(3^x\) + \(3^x\).\(3\) + \(3^x\).\(9\) = \(351\)
=> \(3^x\).\(13\) = \(351\)
=> \(3^x\) = \(27\)
=> \(x\) = \(3\)
2,
C = \(2\) + \(2^2\) + \(2^3\) + ... + \(2^{100}\)
2C = \(2^2\) + \(2^3\) + \(2^4\) + ... + \(2^{101}\)
2C - C = \(2^{101}\) - \(2\)
C = \(2^{101}\) - \(2\)
C = \(2\).\(\left(2^{100}-1\right)\)
C = 2.\(\left(\left(2^5\right)^{20}-1^{20}\right)\)
Có \(2^5\) \(-1\) \(⋮\) 5
=> \(\left(\left(2^5\right)^{20}-1^{20}\right)\) \(⋮\) 5
=> C \(⋮\) 5
3,
Xét \(\overline{abcdeg}\)
= \(\overline{ab}\).\(10000\) + \(\overline{cd}\).\(100\) + \(\overline{eg}\)
= \(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\) + \(9.\left(1111.\overline{ab}+11.\overline{cd}\right)\)
Có\(\left\{{}\begin{matrix}9.\left(1111.\overline{ab}+11.\overline{cd}\right)⋮9\left(1111.\overline{ab}+11.\overline{cd}\inℕ^∗\right)\\\overline{ab}+\overline{cd}+\overline{eg}⋮9\end{matrix}\right.\)
=> \(\overline{abcdeg}⋮9\)
4,
S = \(3^0+3^2+3^4+...+3^{2002}\)
9S = \(3^2+3^4+3^6+...+3^{2004}\)
9S - S = \(3^2+3^4+3^6+...+3^{2004}\) - (\(3^0+3^2+3^4+...+3^{2002}\))
8S = \(3^{2004}-1\)
=> 8S \(< 3^{2004}\)
Vì tại x = 3 thì P(x) = (3 – 3) . Q(x) = 0. Q(x) = 0 nên x = 3 là một nghiệm của đa thức P(x)
P(3)=(3-3)*Q(x)=0
thì x=3 là nghiệm của P(x) thôi bạn
có ;1.2.3.4.......100 chia het cho 3
ma 16 ko chia het cho 3
suy ra 1..2.3...100+16 ko chia het cho 3
tick nhe
\(3^{x+1}\)\(+3^{x+3}+2^{x+3}+2^{x+2}\)
= \(3^x.3+3^x.9+2^x.8+2^x.4\)
=\(3^x.12+2^x.12\)
=\(12\left(3^x+2^x\right)\)
vì 12 chia hét cho 6=> bt trên cx chia hét cho 6
Ta có : \(\frac{x}{50}+\frac{x-1}{49}+\frac{x-2}{48}+\frac{x-3}{47}+\frac{x-150}{25}=0\)
=> \(\frac{x}{50}-1+\frac{x-1}{49}-1+\frac{x-2}{48}-1+\frac{x-3}{47}-1+\frac{x-150}{25}+4=0\)
=> \(\frac{x-50}{50}+\frac{x-50}{49}+\frac{x-50}{48}+\frac{x-50}{47}+\frac{x-50}{25}=0\)
=> \(\left(x-50\right)\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{25}\right)=0\)
=> \(x-50=0\)
=> \(x=50\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{50\right\}\)
Ta có :
A = 1 . 2 . 3 . 4 . ... . 49 có chứa thừa số 10
=> A ⋮ 10 ( do 1.2.3.....9.11.....49 ∈ N )