Tìm Min của A = 3x2-3x+6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: 3x + y = 3 => y = 3x - 3
a) M = 3x2 + y2 = 3x2 + ( 3x - 3)2 = 3x2 + 9x2 - 18x + 9 = 3(4x2 - 6x + 3) = 3(4x2 - 6x +9/4) + 9/4 = 3(2x - 3/2)2 + 9/4 \(\ge\)9/4
Vậy min M là 9/4
b) N = 2xy = 2x(3x - 3) = 6x2 - 6x = 6(x2 - x + 1/4 - 1/4) = 6(x - 1/2)2 - 3/2 \(\le\)-3/2
Vậy max N là -3/2
\(A=\dfrac{51x^2+136x+102}{17\left(x^2-2x+1\right)}=\dfrac{2\left(x^2-2x+1\right)+49x^2+140x+100}{17\left(x^2-2x+1\right)}\)
\(A=\dfrac{2}{17}+\dfrac{\left(7x+10\right)^2}{17\left(x-1\right)^2}\ge\dfrac{2}{17}\)
\(A_{min}=\dfrac{2}{17}\) khi \(x=-\dfrac{10}{7}\)
\(a,=3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)
Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)
\(b,=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(c,=\left(x^2-2xy+y^2\right)+x^2+1=\left(x-y\right)^2+x^2+1\ge1\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=0\end{matrix}\right.\Leftrightarrow x=y=0\)
\(1,\\ a,=3x^3-2x^2+5x\\ b,=2x^3y^2+\dfrac{2}{9}x^4y^2-\dfrac{1}{3}x^2y^3\\ c,=x^2-2x+6x-12=x^2+4x-12\\ 2,\\ a,\Rightarrow6x-9+4-2x=-3\\ \Rightarrow4x=2\Rightarrow x=\dfrac{1}{2}\\ b,\Rightarrow5x-2x^2+2x^2-2x=13\\ \Rightarrow3x=13\Rightarrow x=\dfrac{13}{3}\\ c,\Rightarrow5x^2-5x-5x^2+7x-10x+14=6\\ \Rightarrow-8x=-8\Rightarrow x=1\\ d,\Rightarrow6x^2+9x-6x^2+4x-15x+10=8\\ \Rightarrow-2x=-2\Rightarrow x=1\)
\(3,\\ A=2x^2+x-x^3-2x^2+x^3-x+3=3\\ B=6x^2-10x+33x-55-6x^2-14x-9x-21=-76\)
d: =>6x^2+2x-3x-1+9x-6x^2+12-8x=5
=>13=5(loại)
e: =>0,6x^2-0,3x-0,6x^2-0,39x=0,38
=>-0,69x=0,38
=>x=-38/69
\(A=3x^2-3x+6=3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{21}{4}=3\left(x-\dfrac{1}{2}\right)^2+\dfrac{21}{4}\ge\dfrac{21}{4}\)
\(A_{min}=\dfrac{21}{4}\) khi \(x=\dfrac{1}{2}\)
3x2-3x+6
=3x2-2.xΓ3.1/(2Γ3)+1/12-1/12+6
=[3x2-2.xΓ3.1/(2Γ3)+1/12]-71/12
=[xΓ3-1/(2Γ3)]2-71/12
Ta có [xΓ3-1/(2Γ3)]2≥0 ∀x
Suy ra MinA=-71/12