K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2016

Ta thấy: Một số nguyên tố lớn hơn 3 khi chia cho 12 luôn có số dư là 1;5;7;11.

     Ta chia 4 số dư trên thành 2 nhóm:

  + Nhóm 1: Những số nguyên tố chia cho 12 có số dư là 1 và 11.

  + Nhóm 2:Những số nguyên tố chia cho 12 có số dư là 5 và 7.

Theo nguyên lí Đi-rích-lê,có 3 số mà có 2 nhóm thì ít nhất có 1 nhóm có 2 số.

  => Tổng của chúng chia hết cho 12.

Trong 3 số thì ít nhất phải có 2 số có cùng số dư.

  => Hiệu của chúng chia hết cho 12.

Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12

nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11

) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet) 

28 tháng 6 2016

b/Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet) 

13 tháng 8 2018

dễ mà cũng tra!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

๖ŃĞÚ۶

23 tháng 1 2019

Triệu Lan TRinh sủa ít thôi

5 tháng 6 2016

Cách 2:
S x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + …. + 11x12x(13-10) + 12x13x(14-11)
S x 3 = 1x2x3 + 2x3x4 – 2x3x1 + 3x4x5 – 3x4x2 + …..+ 11x12x13 – 11x12x10 +12x13x14 – 12x13x11
S x 3 = 12 x 13 x14
S = 4 x 13 x 14
S = 728 

Các số nguyên tố hơn 3 chia hết cho 12 thì dư 11 ; 7 ; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư

Này thành 2 nhóm : ( 5 ; 7 ) và ( 1 ; 11 ) thì với ba số bất kỳ đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên ( nguyên ý

dirichlet )

27 tháng 2 2016

xét ba trường hợp :

# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền

# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền 

# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)

BẠN THỬ KIỂM TRA LẠI ĐỀ BÀI XEM

26 tháng 12 2021

xét ba trường hợp :

# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền

# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền 

# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)

 

10 tháng 11 2016

Nguyên lí đi - rich - lê

26 tháng 3 2016

mình chỉ giải được câu 1 thôi nhé 

số nguyên tố là số >1 có 2 ước

gọi số đó là 12k+9

a=12k+9      mà        số nguyên tố là số >1    suy ra    a >9      achia hết cho 3

vậy không có số nguyên tố thõa mãn

19 tháng 3 2018

bù nốt cho bạn này nhé

số nguyên tố chia 12 dư 9=12k+9

mà 12k+9=3(4k+3)

từ đó suy ra số đó chia hết cho 3(có hơn 1 ước)

mà số đó nếu là 3 => 3 không chia hết cho 12 (loại)

vậy Không có số nguyên tố nào chia 12 dư 9