K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2016

Cách 2:
S x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + …. + 11x12x(13-10) + 12x13x(14-11)
S x 3 = 1x2x3 + 2x3x4 – 2x3x1 + 3x4x5 – 3x4x2 + …..+ 11x12x13 – 11x12x10 +12x13x14 – 12x13x11
S x 3 = 12 x 13 x14
S = 4 x 13 x 14
S = 728 

Các số nguyên tố hơn 3 chia hết cho 12 thì dư 11 ; 7 ; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư

Này thành 2 nhóm : ( 5 ; 7 ) và ( 1 ; 11 ) thì với ba số bất kỳ đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên ( nguyên ý

dirichlet )

26 tháng 3 2016

mình chỉ giải được câu 1 thôi nhé 

số nguyên tố là số >1 có 2 ước

gọi số đó là 12k+9

a=12k+9      mà        số nguyên tố là số >1    suy ra    a >9      achia hết cho 3

vậy không có số nguyên tố thõa mãn

19 tháng 3 2018

bù nốt cho bạn này nhé

số nguyên tố chia 12 dư 9=12k+9

mà 12k+9=3(4k+3)

từ đó suy ra số đó chia hết cho 3(có hơn 1 ước)

mà số đó nếu là 3 => 3 không chia hết cho 12 (loại)

vậy Không có số nguyên tố nào chia 12 dư 9

27 tháng 2 2016

xét ba trường hợp :

# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền

# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền 

# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)

BẠN THỬ KIỂM TRA LẠI ĐỀ BÀI XEM

26 tháng 12 2021

xét ba trường hợp :

# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền

# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền 

# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)

 

3 số nguyên tố đã cho lớn hơn 3=>các số đó chia 3 dư 1;2

trong 3 số chia 3 dư 1 và 2 sẽ 2 số chia 3 cùng số dư

gọi 2 số đó là 3q+k và 3g+k

=>hiệu của 2 số đó là:

3g+k-(3q+k)=3g-3k=3(q-k) chia hết cho 3

số nguyên tố lớn hơn 3 là số lẻ=>hiệu của 2 số 3q+k và 3g+k chia hết cho 2

(2;3)=1=>hiệu 2 số đó chia hết cho 6

=>đpcm

4 tháng 10 2015

hình như đây không phải là toán 6

trong 3 số nguyên tố lớn hơn 3 thì 3 số đều lẻ

suy ra hiệu 2 số bất kì đều chia hết cho 2

1 số nguyên tố >3 chia cho 3 có số dư 1 hoặc 2 nên trong 3 số nguyên tố >3 tồn tại 2 số có cùng số dư khi chia cho 3 nên hiệu 2 số này chia hết cho 3

giả sử a-b chia hết cho 3

thì a-b cũng chia hết cho 2

nên a-b chia hết cho 6

5 tháng 9 2021

Trong 3 số nguyên tố lớn hơn 3 thì 3 số đều lẻ.

Suy ra hiệu 2 số bất kì đều chia hết cho 2.

1 số nguyên tố >3 chia cho 3 có số dư 1 hoặc 2 nên trong 3 số nguyên tố >3 tồn tại 2 số có cùng số dư khi chia cho 3 nên hiệu 2 số này chia hết cho 3.

Giả sử a-b chia hết cho 3.

Thì a-b cũng chia hết cho 2.

Nên a-b chia hết cho 6.

29 tháng 8 2021

các số nguyên tố lớn hơn 3 có dạng 3k+1 và 3k+2 và đều là số lẻ

theo nguyên lí diriclet trong 3 số nguyên tố lớn hơn 3 thì ít nhất có 2 số có cùng số dư nên hiệu 2 số đó chia hết cho 3 (1)

vì 2 số đó là số nguyên tố >3 nên 2 số đó lẻ nên hiệu 2 số đó chia hết cho 2 (2)

từ (1) và (2) suy ra 2 số đó chia hết cho 6 hay trong 3 số nguyên tố lớn hơn 3 luôn tồn tại hai số có hiệu chia hết cho 6.

29 tháng 3 2016

Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)