5+2-2*2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=5+5^3+5^5+...+5^{101}\)
\(5^2\cdot C=5^2\cdot\left(5+5^3+...+5^{101}\right)\)
\(25C=5^3+5^5+...+5^{103}\)
\(25C-C=\left(5^3+5^5+....+5^{103}\right)-\left(5+5^3+5^5+...+5^{101}\right)\)
\(24C=\left(5^3-5^3\right)+\left(5^5-5^5\right)+...+\left(5^{103}-5\right)\)
\(24C=5^{103}-5\)
\(C=\dfrac{5^{103}-5}{24}\)
_____________
\(D=2^{100}-2^{99}+2^{98}-...+2^2-2+1\)
\(2D=2\cdot\left(2^{100}-2^{99}+2^{98}-...-2+1\right)\)
\(2D=2^{101}-2^{100}+2^{99}-...-2^2+2\)
\(2D+D=2^{101}-2^{100}+...-2^2+2+2^{100}-2^{99}+...-2+1\)
\(D=2^{101}+1\)
\(A=2^{2010}\cdot5^{2010}\)
\(A=10^{2010}\)
suy ra có 2011 chữ số
Nhớ bấm L I K E cho mk nhá :))))
đấy tóan lớp 5 á :)))
a: \(P=\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{1}-\sqrt{3}-\sqrt{2}\)
\(=2+\sqrt{3}+2-\sqrt{2}-\sqrt{3}-\sqrt{2}\)
\(=4-2\sqrt{2}\)
b: \(N=\left(1-\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)\left(\dfrac{-\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}-1\right)\)
\(=\left(1-\sqrt{5}\right)\left(-\sqrt{5}-1\right)\)
\(=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=5-1=4\)
\(2A-A=\left(2^2+2^3+...+2^{21}\right)-\left(2+2^2+...+2^{20}\right)\)
\(A=2^{21}-2\)
B tương tự câu A
\(5C-C=\left(5^2+5^3+...+5^{51}\right)-\left(5+5^2+...+5^{50}\right)\)
\(C=\dfrac{5^{51}-5}{4}\)
\(3D-D=3+3^2+...+3^{101}-\left(1+3+...+3^{100}\right)\)
\(D=\dfrac{3^{101}-1}{2}\)
\(A=2^1+2^2+2^3+...+2^{20}\)
\(2\cdot A=2^2+2^3+2^4+...+2^{21}\)
\(A=2^{21}-2\)
\(B=2^1+2^3+2^5+...+2^{99}\)
\(4\cdot B=2^3+2^5+2^7+...+2^{101}\)
\(B=\)\(\left(2^{101}-2\right):3\)
\(C=5^1+5^2+5^3+...+5^{50}\)
\(5\cdot C=5^2+5^3+5^4+...+5^{51}\)
\(C=(5^{51}-5):4\)
\(D=3^0+3^1+3^2+...+3^{100}\)
\(3\cdot D=3^1+3^2+3^3+...+3^{101}\)
\(D=(3^{101}-1):2\)
\(\dfrac{2}{5}\times2+4\times\dfrac{2}{5}+\dfrac{2}{5}\times5-\dfrac{2}{5}\\ =\left(2+4+5-1\right)\times\dfrac{2}{5}\\ =10\times\dfrac{2}{5}\\ =4\)
=3 nha đúng đó
= three nha
mk nhé