\(\dfrac{1+2+2^2+...+2^{2012}}{2^{2014}\times2}\)
Giải giúp mình với !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(\dfrac{x-1}{2014}+\dfrac{x-2}{2013}+\dfrac{x-3}{2012}+...+\dfrac{x-2014}{1}=2014\)
\(\Leftrightarrow\left(\dfrac{x-1}{2014}-1\right)+\left(\dfrac{x-2}{2013}-1\right)+...+\left(\dfrac{x-2014}{1}-1\right)=0\)
\(\Leftrightarrow\dfrac{x-2015}{2014}+\dfrac{x-2015}{2013}+...+\dfrac{x-2015}{1}=0\)
\(\Leftrightarrow\left(x-2025\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1}\right)=0\)
\(\Leftrightarrow x=2015\)
Vậy \(S=\left\{2015\right\}\)
Ai giúp mình câu này với
(1+1/2+1/3+...+1/2012+1/2013) .x +2013 = 2014+2015/2+...+4025/2012+4026/2013
a: \(\Leftrightarrow x+2016=0\)
hay x=-2016
b: \(\Leftrightarrow x-100=0\)
hay x=100
Đặt M=\(\frac{A}{B}\)
A=1+2+22+23+.....+22012
2A=2+22+23+......+22013
2A-A=(2+22+23+....+22013) - (1+2+22+.....+22012)
A=22013 - 1
B=22014-2
B=2.(22013-1)
=>M=\(\frac{2^{2013}-1}{2.\left(2^{2013}-1\right)}\)=\(\frac{1}{2}\)
Đặt \(S=1+2+2^2+...+2^{2012}\)
=> \(2S=2+2^2+2^3+...+2^{2013}\)
\(2S-S=2^{2013}-1=S\)
Biểu thức ban đầu có dạng:
\(\dfrac{2^{2013}-1}{2^{2014}\times2}=\dfrac{2^{2013}-1}{2^{2015}}\)
Đề yêu cầu gì em?