Phân tích đa thức thành nhân tử:
\(5-7x^2\) (với x>0)
\(3+4x\) (với x<0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) 7x2 - 5x - 2 = 7x2 - 7x + 2x - 2 = 7x(x - 1) + 2(x - 1) = (x - 1).(7x + 2)
2. 5(2x - 1)2 - 3(2x - 1) = 0
<=> (2x - 1).[5(2x - 1) - 3] = 0
<=> (2x - 1).(10x - 8) = 0
<=> (2x - 1) = 0 hoặc (10x - 8) = 0
<=> x = 1/2 hoặc x = 4/5
3. x2 - 4x + 7 = (x2 - 4x + 4) + 3 = (x - 2)2 + 3
Do: (x - 2)2 > hoặc = 0 (với mọi x)
Nên (x - 2)2 + 3 > hoặc = 3 (với mọi x)
Hay (x - 2)2 + 3 > 0 (với mọi x) => đpcm
\(a^2-6a+5=\left(a^2-5a\right)-\left(a-5\right)=a\left(a-5\right)-\left(a-5\right)=\left(a-1\right)\left(a-5\right)\)
\(a^2-7a+12=\left(a^2-3a\right)-\left(4a-12\right)=a\left(a-3\right)-4\left(a-3\right)=\left(a-4\right)\left(a-3\right)\)
\(4a^2+4a-3=4a^2-2a+\left(6a-3\right)=2a\left(2a-1\right)+3\left(2a-1\right)=\left(2a+3\right)\left(2a-1\right)\)
X2 - 6x + 5
= x2 - 6x + 5 + 4 - 4
= x2 - 6x + 9 - 22
= ( x - 3 )2 - 22
= ( x - 3 - 2 ) ( x - 3 + 2 )
a) \(x^3+4x^2-21x\)
\(=x\left(x^2+4x-21\right)\)
\(=x\left(x^2-3x+7x-21\right)\)
\(=x\left[x\left(x-3\right)+7\left(x-3\right)\right]\)
\(=x\left(x-3\right)\left(x+7\right)\)
b) \(5x^3+6x^2+x\)
\(=x\left(5x^2+6x+1\right)\)
\(=x\left(5x^2+5x+x+1\right)\)
\(=x\left[5x\left(x+1\right)+\left(x+1\right)\right]\)
\(=x\left(x+1\right)\left(5x+1\right)\)
c) \(x^3-7x+6\)
\(=x^3+2x^2-3x-2x^2-4x+6\)
\(=x\left(x^2+2x-3\right)-2\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x-1\right)\left(x+3\right)\)
d) \(3x^3+2x-5\)
\(=3x^3+3x^2+5x-3x^2-3x-5\)
\(=x\left(3x^2+3x+5\right)-\left(3x^2+3x+5\right)\)
\(=\left(x-1\right)\left(3x^2+3x+5\right)\)
\(4x^3-7x^2+3x\)
\(=4x^3-4x^2-3x^2+3x\)
\(=4x^2\left(x-1\right)-3x\left(x-1\right)\)
\(=\left(x-1\right)\left(4x^2-3x\right)=x\left(x-1\right)\left(4x-3\right)\)
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-15\)
\(=\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)-15\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+4+2\right)-15\)
\(=\left(x^2-5x+4\right)^2+2\left(x^2-5x+4\right)+1-16\)
\(=\left(x^2-5x+4+1\right)^2-4^2\)
\(=\left(x^2-4x+4+1-4\right)\left(x^2-4x+4+1+4\right)\)
\(=\left(x^2-4x+1\right)\left(x^2-4x+9\right)\)
a)\(x^3+4x^2-7x-10=x^3+x^2+3x^2+3x-10x-10=x^2\left(x+1\right)+3x\left(x+1\right)-10\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+3x-10\right)=\left(x+1\right)\left[\left(x^2+5x\right)-\left(2x+10\right)\right]=\left(x+1\right)\left(x+5\right)\left(x-2\right)\)
b) \(x^8+x+1=x^8-x^2+x^2+x+1=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)\left(x^3+1\right)+1\right]\)
a) x3 - 7x - 6 = x3 + x2 - x2 - x - 6x - 6
= x2(x + 1) - x(x + 1) - 6(x + 1)
= (x + 1)(x2 - x - 6)
= (x + 1)(x2 + 2x - 3x - 6)
= (x + 1)[x(x + 2) - 3(x + 2)]
= (x + 1)(x + 2)(x - 3)
\(5-7x^2=\left(\sqrt{5}\right)^2-\left(x\sqrt{7}\right)^2\)
\(=\left(\sqrt{5}-x\sqrt{7}\right)\left(\sqrt{5}+x\sqrt{7}\right)\)
\(3+4x=\left(\sqrt{3}\right)^2-\left(2\sqrt{x}\right)^2\) ( do x<0 )
\(=\left(\sqrt{3}-2\sqrt{x}\right)\left(3+2\sqrt{x}\right)\)