\(Bài1:Tính\)
\(A=100+98+96+......+4+2-97-95-......-3-1\)
Bài 2:Tìm \(x\in N\) biết:
\(\left(2+x\right)+\left(4+x\right)\left(6+x\right)+.......+\left(52+x\right)=780\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)
\(\Leftrightarrow\dfrac{x+2+98}{98}+\dfrac{x+3+97}{97}-\dfrac{x+4+96}{96}-\dfrac{x+5+95}{95}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\right)=0\)
\(\Rightarrow x+100=0\)
\(\Leftrightarrow x=-100\)
Vậy...
\(\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{\left(x+3\right)}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)
\(\Rightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}=\dfrac{x+100}{96}+\dfrac{x+100}{95}\)
\(\Rightarrow\left(x+100\right).\left(\dfrac{1}{98}+\dfrac{1}{97}\right)=\left(x+100\right).\left(\dfrac{1}{96}+\dfrac{1}{95}\right)\)
\(\Rightarrow\dfrac{1}{98}+\dfrac{1}{97}=\dfrac{1}{96}+\dfrac{1}{95}\) (Vô lí)
Vậy PTVN
a/Viết đề mà cx sai đc nữa: \(\left(\frac{x+2}{98}+1\right)\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)\left(\frac{x+5}{95}+1\right)\)
\(\Leftrightarrow\frac{x+100}{98}.\frac{x+100}{97}-\frac{x+100}{96}.\frac{x+100}{95}=0\)
\(\Leftrightarrow\left(x+100\right)^2\left(\frac{1}{98.97}-\frac{1}{96.95}\right)=0\)
\(\Rightarrow x=-100\)
b/\(\Leftrightarrow\left(\frac{x+1}{1998}+1\right)+\left(\frac{x+2}{1997}+1\right)=\left(\frac{x+3}{1996}+1\right)+\left(\frac{x+4}{1995}+1\right)\)
\(\Leftrightarrow\frac{x+1999}{1998}+\frac{x+1999}{1997}-\frac{x+1999}{1996}-\frac{x+1999}{1995}=0\)
\(\Leftrightarrow\left(x+1999\right)\left(...\right)=0\Rightarrow x=-1999\)
b,\(\frac{x+1}{1998}+\frac{x+2}{1997}=\frac{x+3}{1996}+\frac{x+4}{1995}\)
=>\(\frac{x+1}{1998}+1\frac{x+2}{1997}+1=\frac{x+3}{1996}+1+\frac{x+4}{1995}+1\)
\(\Leftrightarrow\)\(\frac{x+1999}{1998}+\frac{x+1999}{1997}=\frac{x+1999}{1996}+\frac{x+1999}{1995}\)
\(\Leftrightarrow\)\(\frac{x+1999}{1998}+\frac{x+1999}{1997}-\frac{x+1999}{1996}-\frac{x+1999}{1995}\)=0
\(\Leftrightarrow\)\(\left(x+1999\right)\left(\frac{1}{1998}+\frac{1}{1997}-\frac{1}{1996}-\frac{1}{1995}\right)\)=0
\(\Leftrightarrow\)x+1999=0(Vì \(\frac{1}{1998}+\frac{1}{1997}-\frac{1}{1996}-\frac{1}{1995}\ne0\))
\(\Leftrightarrow\)x=-1999
Vậy x=-1999
a)
\(A=\left(x-6\right)^2+\left(x+6\right)^2\)
\(A=\left(x^2-2x6+6^2\right)+\left(x^2+2x6+6^2\right)\)
\(A=x^2-2x6+6^2+x^2+2x6+6^2\)
\(A=\left(x^2+x^2\right)+\left(-2x6+2x6\right)+\left(6^2+6^2\right)\)
\(A=2x^2+72\)
b)
\(B=\left(x^2+y^2+3^2+2xy+2x3+2y3\right)-\left(x^2+y^2+9\right)\)
\(B=x^2+y^2+3^3+2xy+2x3+2y3-x^2-y^2-9\)
\(B=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(3^2-9\right)+2xy+2x3+2y3\)
\(B=2xy+2x3+2y3\)
Mình phải đi ngủ rồi, có gì mai làm tiếp nha
c/
C = (5x - 2) . (5x + 2) - (5x - 1)2
C = [(5x)2 - 22] - [(5x)2 - 2 . 5x1 + 12]
C = (5x)2 - 22 - (5x)2 + 2 . 5x1 - 12
C = [(5x)2 - (5x)2] + (-22 + 2 - 12) + 5x1
C = 5 + 5x1.
\(\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)
\(\Rightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}=\dfrac{x+100}{96}+\dfrac{x+100}{95}\)
\(\Rightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}-\dfrac{x+100}{96}-\dfrac{x+100}{95}=0\)
\(\Rightarrow\left(x+100\right).\left(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\right)=0\)
Mà \(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\ne0\Rightarrow x+100=0\Rightarrow x=-100\)
Vậy x=-100
\(\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)
\(\Rightarrow\left[\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)\right]-\left[\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\right]=0\)
\(\Rightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}-\dfrac{x+100}{96}-\dfrac{x+100}{95}=0\)
\(\Rightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\right)=0\)
\(\Rightarrow x+100=0\Rightarrow x=-100\)
a) \(\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)
\(\Rightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}=\dfrac{x+100}{96}+\dfrac{x+100}{95}\)
\(\Rightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}-\dfrac{x+100}{96}-\dfrac{x+100}{95}=0\)
\(\Rightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\right)=0\)
Vì \(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\ne0\) nên \(x+100=0\Leftrightarrow x=-100\)
b) \(\dfrac{x+1}{1998}+\dfrac{x+2}{1997}=\dfrac{x+3}{1996}+\dfrac{x+4}{1995}\)
\(\Rightarrow\dfrac{x+1}{1998}+1+\dfrac{x+2}{1997}+1=\dfrac{x+3}{1996}+1+\dfrac{x+4}{1995}+1\)
\(\Rightarrow\dfrac{x+1999}{1998}+\dfrac{x+1999}{1997}=\dfrac{x+1999}{1996}+\dfrac{x+1999}{1995}\)
\(\Rightarrow\dfrac{x+1999}{1998}+\dfrac{x+1999}{1997}-\dfrac{x+1999}{1996}-\dfrac{x+1999}{1995}=0\)
\(\Rightarrow\left(x+1999\right)\left(\dfrac{1}{1998}+\dfrac{1}{1997}-\dfrac{1}{1996}-\dfrac{1}{1995}\right)=0\)
Vì \(\dfrac{1}{1998}+\dfrac{1}{1997}-\dfrac{1}{1996}-\dfrac{1}{1995}\ne0\) nên \(x+1999=0\Leftrightarrow x=-1999\)
c) \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)
\(\Rightarrow\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)
\(\Rightarrow\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)
\(\Rightarrow\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)
Vì \(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\ne0\) nên \(300-x=0\Leftrightarrow x=300\)
a) \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\)
=> \(\frac{x+2+98}{98}+\frac{x+3+97}{97}=\frac{x+4+96}{96}+\frac{x+5+95}{95}\)
=> \(\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}\)
=> \(\frac{x+100}{98}+\frac{x+100}{97}-\frac{x+100}{96}-\frac{x+100}{95}=0\)
=> \(\left(x+100\right)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
Ta có : \(\frac{1}{98}+\frac{1}{97}\ne\frac{1}{96}+\frac{1}{95}\) => \(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\)
=> \(x+100=0\)
=> \(x=-100\)
Nhiều thế bạn tách từng câu ra mik giải cho (olm ko dc trừ điểm câu này của e)
Phần b bạn tự làm nhé, chỉ cần quy đồng lên lấy MC = 105 là được mà
Phần a mình giải ntn:
PT \(\Leftrightarrow\) \(\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}\)
\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
\(\Leftrightarrow\)\(x+100=0\)
\(\Leftrightarrow x=-100\)