giải tam giác ABC biết góc A = 90 độ , ab=8cm , ac = 12cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Đây là tam giác vuông
b: Đây ko là tam giác vuông
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10cm
Xét ΔBAC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\)
\(\Leftrightarrow\widehat{C}\simeq37^0\)
\(\Leftrightarrow\widehat{B}=53^0\)
Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(8^2+12^2-BC^2=2\cdot8\cdot12\cdot\dfrac{1}{2}\)
=>\(BC^2=64+144-96=64+48=112\)
=>\(BC=4\sqrt{7}\left(cm\right)\)
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
Dựng AH vuông góc với BC, đặt AB = x, ta có : AH = x.sin B = x.sin60 = x.căn 3 / 2
HB = x.cos 60 = x/2 => HC = BC - HB = 8 - x/2 = (16 - x)/2
AC = 12 - AB = 12 - x
Trong tam giác vuông AHC : AH^2 + HC^2 = AC^2
hay (x. căn 3 /2)^2 + (16 - x)^2/4 = (12 - x)^2
<=> 3x^2 + (16 - x)^2 = 4(12 - x)^2
Giải phương trình này tìm được x = 5
Tam giác ABC vuông tại A, B=60.
⇒ Tam giác ABC là 1 nửa tam giác đều
⇒AB = \(\frac{BC}{2}\) =4cm.
AC=12‐4=8cm
Vậy AB=4cm
AC=8cm
Kẻ: \(AH\perp BC\).Đặt \(AB=2x\Rightarrow BH=x\Rightarrow AH=x\sqrt{3};HC=8-x\)
Áp dụng định lí Pi-ta-go có:
\(AC=\sqrt{\left(x\sqrt{3}\right)^2+\left(8-x\right)^2}=\sqrt{4x^2-16x+64}\)
Do \(AB+AC=12\Rightarrow2x+\sqrt{4x^2-16x+64}=12\)
Giải phương trình có x = 2,5
\(\Rightarrow AB=2x=2.2,5=5cm\)
Thay số vào tính được AC =))
Kẻ đường cao AH ứng với BC
Đặt \(AB=x\) với \(0< x< 12\Rightarrow AC=12-x\)
Đặt \(BH=y\Rightarrow CH=8-y\) (với \(0< y< 8\))
Trong tam giác vuông ABH ta có:
\(cosB=\dfrac{BH}{AB}\Rightarrow BH=AB.cosB=\dfrac{x}{2}\Rightarrow y=\dfrac{x}{2}\)
\(\Rightarrow CH=8-y=8-\dfrac{x}{2}\)
\(sinB=\dfrac{AH}{AB}\Rightarrow AH=AB.sinB=\dfrac{x\sqrt{3}}{2}\)
Áp dụng Pitago cho tam giác vuông ACH:
\(AC^2=AH^2+CH^2\Leftrightarrow\left(12-x\right)^2=\left(\dfrac{x\sqrt{3}}{2}\right)^2+\left(8-\dfrac{x}{2}\right)^2\)
\(\Leftrightarrow16x-80=0\Rightarrow x=5\)
\(\Rightarrow AC=12-x=7\)
Vậy \(AB=5cm,AC=7cm\)
hỏi gỉ giợ
Ta có \(\Delta\)ABC vuông tại A
=> \(BC^2=AC^2+AB^2\)(Định lý pitago)
Thay AC = 12, AB = 8, ta có
\(BC^2=12^2+8^2\)
\(=144+64=208\)
=> \(BC=\sqrt{208}=\text{14.42220510185596}\)
Kiểu như vậy đấy :)