K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
3 tháng 9 2022

\(K=1+n+n^2+...+n^k\)

\(nK=n+n^2+n^3+...+n^{k+1}\)

\(nK-K=\left(n+n^2+n^3+...+n^{k+1}\right)-\left(1+n+n^2+...+n^k\right)\)

\(\left(n-1\right)K=n^{k+1}-1\)

\(K=\dfrac{n^{k+1}-1}{n-1}\)

10 tháng 6 2018

a) Xét trên tử

Ta có :

1.5.6 + 2.10.12 + 4.20.24 + 9.45.54

= 1.5.6 + \(^{2^3}\). 1.5.6 + \(^{4^3}\).1.5.6 + \(^{9^3}\).1.5.6

= 1.5.6 ( 2^3 + 4^3 + 9^3 )

Xét mẫu

Ta có :

1.3.5 + 2.6.10 + 4.12.20 + 9.27.45

= 1.3.5 + 2^3 .1.3.5 + 4^3 . 1.3.5 + 9^3 .1.3.5

= 1.3.5 ( 2^3 + 4^3 + 9^3 )

Ta có 

A = \(\frac{1.5.6.\left(2^3+4^3+9^3\right)}{1.3.5.\left(2^3+4^3+9^3\right)}\)= 2

b) Ta có :

 k(k+1)(k+2)-(k-1)k(k+1) = k(k + 1) (k + 2 - k + 1 ) = k( k + 1 ) . 3 = 3k( k + 1 )

Ta có :

S = 1.2 + 2.3 + 3.4 + ... + n(n + 1 )

\(\Rightarrow\)3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n + 1) . 3

3S = 1.2.3 + 2.3(4 - 1) + 3.4(5 - 2) + ... + n(n + 1)[(n + 2) - (n - 1)]

3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - (n - 1)n(n + 1)

3S = n(n + 1)(n + 2)

S = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

2 tháng 12 2018

Bạn cm số đó chia hết là đc thui

2 tháng 12 2018

cm là j hở bn