d) 4x[(3+3^7:3^4):10+97]-300
e) 5x[(92+2^5:2):5^2+24]-7^2
f)3^2x[(5^2-3):11]-2^4+2x10^3-(1^48)^49
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=3\sqrt{5}+2\sqrt{5}-2\sqrt{5}=3\sqrt{5}\)
b: \(=2\sqrt{2}+2\sqrt{2}+5\sqrt{2}=9\sqrt{2}\)
c: \(=4\sqrt{3}+3\sqrt{3}-3\sqrt{5}+2\sqrt{5}=7\sqrt{3}-\sqrt{5}\)
d: \(=5\sqrt{3}+4\sqrt{3}-10\sqrt{3}=-\sqrt{3}\)
e: \(=\left(\sqrt{7}-2\sqrt{3}\right)\cdot\sqrt{7}+2\sqrt{21}\)
=7-2*căn 21+2*căn 21
=7
f: \(=\left(2\sqrt{11}-3\sqrt{2}\right)\cdot\sqrt{11}+3\sqrt{22}\)
=22-3*căn 22+3*căn 22
=22
a) \(3\sqrt{5}+\sqrt{20}-2\sqrt{5}\)
\(=3\sqrt{5}+2\sqrt{5}-2\sqrt{5}\)
\(=3\sqrt{5}\)
b) \(2\sqrt{2}+\sqrt{8}+\sqrt{50}\)
\(=2\sqrt{2}+2\sqrt{2}+5\sqrt{2}\)
\(=9\sqrt{5}\)
c) \(4\sqrt{3}+\sqrt{27}-\sqrt{45}+2\sqrt{5}\)
\(=4\sqrt{3}+3\sqrt{3}-3\sqrt{5}+2\sqrt{5}\)
\(=7\sqrt{3}-\sqrt{5}\)
d) \(\sqrt{75}+\sqrt{48}-\sqrt{300}\)
\(=5\sqrt{3}+4\sqrt{3}-10\sqrt{3}\)
\(=-\sqrt{3}\)
e) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(=\left(2\sqrt{7}-2\sqrt{3}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(=\left(\sqrt{7}-2\sqrt{3}\right)\sqrt{7}+2\sqrt{21}\)
\(=7-2\sqrt{21}+2\sqrt{21}\)
\(=7\)
f) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
\(=\left(3\sqrt{11}-3\sqrt{2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
\(=\left(2\sqrt{11}-3\sqrt{2}\right)\sqrt{11}+3\sqrt{22}\)
\(=22-3\sqrt{22}+3\sqrt{22}\)
\(=22\)
g) \(3\sqrt{45}-5\sqrt{125x}+7\sqrt{20x}+28\)
\(=9\sqrt{5}-25\sqrt{5x}+14\sqrt{5x}+28\)
\(=9\sqrt{5}-11\sqrt{5x}+28\)
1) \(\left(5x-4\right)\left(4x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{4}{5};\dfrac{3}{2}\right\}\)
2) \(\left(4x-10\right)\left(24+5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-24}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{5}{2};\dfrac{-24}{5}\right\}\)
3) \(\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{3;\dfrac{-1}{2}\right\}\)
2: 12-10x=25-30x
=>20x=13
=>x=13/20
3: \(3\left(2x+3\right)-2\left(4x-5\right)=10x+21\)
=>6x+9-8x+10=10x+21
=>10x+21=-2x+19
=>12x=-2
=>x=-1/6
4: \(\Leftrightarrow25x-15-6x+12=11-5x\)
=>19x-3=11-5x
=>24x=14
=>x=7/12
5: \(\Leftrightarrow8-12x-5+10x=4-6x\)
=>4-6x=-2x+3
=>-4x=-1
=>x=1/4
6: \(\Leftrightarrow32x-24-6+9x=13-40x\)
=>41x-30=13-40x
=>81x=43
=>x=43/81
7: \(\Leftrightarrow10x-5+20x=5x-11\)
=>30x-5=5x-11
=>25x=-6
=>x=-6/25
a; -2\(x\) - 3.(\(x-17\)) = 34 - 2.( - \(x\) + 25)
- 2\(x\) - 3\(x\) + 51 = 34 + 2\(x\) - 50
2\(x\) + 2\(x\) + 3\(x\) = - 34 + 50 + 51
7\(x\) = 67
\(x\) = 67 : 7
\(x\) = \(\dfrac{67}{7}\)
Vậy \(x\) = \(\dfrac{67}{7}\)
b; 17\(x\) + 3.(- 16\(x\) - 37) = 2\(x\) + 43 - 4\(x\)
17\(x\) - 48\(x\) - 111 = 2\(x\) - 4\(x\) + 43
- 31\(x\) - 2\(x\) + 4\(x\) = 111 + 43
- \(x\) x (31 + 2 - 4) = 154
- \(x\) x (33 - 4) = 154
- \(x\) x 29 = 154
- \(x\) = 154 : (-29)
\(x\) = - \(\dfrac{154}{29}\)
Vậy \(x=-\dfrac{154}{29}\)