K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) và BĐT AM-GM ta có:

\(P=\frac{2}{a^2+b^2}+\frac{2}{2ab}+\frac{32}{ab}+2ab+\frac{2}{ab}\)

\(\ge\frac{2.4}{a^2+b^2+2ab}+2\sqrt{\frac{32}{ab}.2ab}+\frac{2}{ab}\)

\(\ge\frac{8}{\left(a+b\right)^2}+2.\sqrt{64}+\frac{2}{\frac{\left(a+b\right)^2}{4}}\)

\(\ge\frac{8}{4^2}+2.8+\frac{8}{\left(a+b\right)^2}\ge\frac{1}{2}+16+\frac{8}{4^2}=\frac{1}{2}+16+\frac{1}{2}=17\)

Nên GTNN của P là 17 đạt được khi a=b=2

AH
Akai Haruma
Giáo viên
27 tháng 7 2024

Lời gải:

Áp dụng BĐT Cauchy Schwarz và BĐT AM-GM:

$M=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+ab}+\frac{1}{b^2+ab}+\frac{1}{a^2+b^2}$

$\geq \frac{(1+1+1+1+1)^2}{2ab+2ab+a^2+ab+b^2+ab+a^2+b^2}=\frac{25}{2a^2+2b^2+6ab}$

$=\frac{25}{2(a^2+b^2+2ab)+2ab}$

$=\frac{25}{2(a+b)^2+2ab}=\frac{25}{2+2ab}\geq \frac{25}{2+2.\frac{(a+b)^2}{4}}=\frac{25}{2+\frac{2}{4}}=10$

Vậy  $M_{\min}=10$. Giá trị này đạt tại $a=b=\frac{1}{2}$

2 tháng 11 2019

1.

Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)

Áp dụng bất đẳng thức Côsi cho 2 số dương

\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)

\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)

Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)

2.

\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)

Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5

\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)

Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5

18 tháng 9 2017

Cau 1: Ta có: 
A=x^2 - 2*3x + 9 +2(y^2 - 2y +1) + 7 
=(x-3)^2 +2(y-1)^2 +7 >+ 7 
=> minA= 7 <=> x=3 và y=1

18 tháng 9 2017

câu 1 đâu có y

2 tháng 11 2015

Dễ,2a+b=6 =>b=6-2a

ab=a(6-2a)=6a-2a^2=9/2 -2(9/4 -3a+a^2)=9/2 -2(3/2 - a)^2 =>Min ab=9/2 khi a=3/2,b=3

16 tháng 5 2016

Có: \(a^2+b^2\ge2ab\Rightarrow a^2+b^2\ge2\)
\(\Rightarrow\left(a+b+1\right)\left(a^2+b^2\right)\ge2\left(a+b+1\right)\)
\(\Rightarrow Q\ge2\left(a+b\right)+\frac{8}{a+b}+2\)
Mà: \(2\left(a+b\right)+\frac{8}{a+b}\ge2\sqrt{2\left(a+b\right).\frac{8}{a+b}}=8\)
\(\Rightarrow Q\ge10\)
Dấu "=" xảy ra <=> a=b=1