Tìm GTNN của
B =ab/a-b với a>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) và BĐT AM-GM ta có:
\(P=\frac{2}{a^2+b^2}+\frac{2}{2ab}+\frac{32}{ab}+2ab+\frac{2}{ab}\)
\(\ge\frac{2.4}{a^2+b^2+2ab}+2\sqrt{\frac{32}{ab}.2ab}+\frac{2}{ab}\)
\(\ge\frac{8}{\left(a+b\right)^2}+2.\sqrt{64}+\frac{2}{\frac{\left(a+b\right)^2}{4}}\)
\(\ge\frac{8}{4^2}+2.8+\frac{8}{\left(a+b\right)^2}\ge\frac{1}{2}+16+\frac{8}{4^2}=\frac{1}{2}+16+\frac{1}{2}=17\)
Nên GTNN của P là 17 đạt được khi a=b=2
Lời gải:
Áp dụng BĐT Cauchy Schwarz và BĐT AM-GM:
$M=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+ab}+\frac{1}{b^2+ab}+\frac{1}{a^2+b^2}$
$\geq \frac{(1+1+1+1+1)^2}{2ab+2ab+a^2+ab+b^2+ab+a^2+b^2}=\frac{25}{2a^2+2b^2+6ab}$
$=\frac{25}{2(a^2+b^2+2ab)+2ab}$
$=\frac{25}{2(a+b)^2+2ab}=\frac{25}{2+2ab}\geq \frac{25}{2+2.\frac{(a+b)^2}{4}}=\frac{25}{2+\frac{2}{4}}=10$
Vậy $M_{\min}=10$. Giá trị này đạt tại $a=b=\frac{1}{2}$
1.
Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)
Áp dụng bất đẳng thức Côsi cho 2 số dương
\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)
\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)
Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)
2.
\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)
Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5
\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)
Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5
Cau 1: Ta có:
A=x^2 - 2*3x + 9 +2(y^2 - 2y +1) + 7
=(x-3)^2 +2(y-1)^2 +7 >+ 7
=> minA= 7 <=> x=3 và y=1
Dễ,2a+b=6 =>b=6-2a
ab=a(6-2a)=6a-2a^2=9/2 -2(9/4 -3a+a^2)=9/2 -2(3/2 - a)^2 =>Min ab=9/2 khi a=3/2,b=3
Có: \(a^2+b^2\ge2ab\Rightarrow a^2+b^2\ge2\)
\(\Rightarrow\left(a+b+1\right)\left(a^2+b^2\right)\ge2\left(a+b+1\right)\)
\(\Rightarrow Q\ge2\left(a+b\right)+\frac{8}{a+b}+2\)
Mà: \(2\left(a+b\right)+\frac{8}{a+b}\ge2\sqrt{2\left(a+b\right).\frac{8}{a+b}}=8\)
\(\Rightarrow Q\ge10\)
Dấu "=" xảy ra <=> a=b=1