K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 8 2021

\(C=\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{ab}+\dfrac{1}{ab}\right)+3\left(ab+\dfrac{1}{16ab}\right)+\dfrac{29}{16ab}\)

\(C\ge\dfrac{16}{a^2+b^2+2ab}+6\sqrt{\dfrac{ab}{16ab}}+\dfrac{29}{4\left(a+b\right)^2}\ge\dfrac{16}{1}+\dfrac{6}{4}+\dfrac{29}{4}=\dfrac{99}{4}\)

12 tháng 5 2017

Ta có:

\(a+b\ge2\sqrt{ab}\)

\(\Rightarrow1\ge2\sqrt{ab}\)

\(\Leftrightarrow ab\le\frac{1}{4}\)

Quay lại bài toán ta có:

\(K=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)\)

\(\ge\frac{1}{\frac{2}{4}}+\frac{4}{\left(a+b\right)^2}=2+4=6\)

Dấu = xảy ra khi \(a=b=\frac{1}{2}\) 

12 tháng 5 2017

khó quá mik chưa học tới lớp 9

29 tháng 11 2021

\(a+b\ge2\sqrt{ab}\Leftrightarrow2\sqrt{ab}\le4\Leftrightarrow ab\le4\)

\(P=\left(\dfrac{2}{a^2+b^2}+\dfrac{1}{ab}\right)+\dfrac{2}{ab}+2ab+\dfrac{32}{ab}\\ \Leftrightarrow P=2\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+\dfrac{2}{ab}+2ab+\dfrac{32}{ab}\\ \Leftrightarrow P\ge2\cdot\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{32}{ab}\cdot2ab}+\dfrac{2}{4}\\ \Leftrightarrow P\ge\dfrac{8}{\left(a+b\right)^2}+2\sqrt{64}+\dfrac{1}{2}\\ \Leftrightarrow P\ge\dfrac{8}{16}+16+\dfrac{1}{2}=17\)

Dấu \("="\Leftrightarrow a=b=2\)

16 tháng 5 2016

Có: \(a^2+b^2\ge2ab\Rightarrow a^2+b^2\ge2\)
\(\Rightarrow\left(a+b+1\right)\left(a^2+b^2\right)\ge2\left(a+b+1\right)\)
\(\Rightarrow Q\ge2\left(a+b\right)+\frac{8}{a+b}+2\)
Mà: \(2\left(a+b\right)+\frac{8}{a+b}\ge2\sqrt{2\left(a+b\right).\frac{8}{a+b}}=8\)
\(\Rightarrow Q\ge10\)
Dấu "=" xảy ra <=> a=b=1

18 tháng 10 2020

\(C=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{1}{2ab}\)

Vì \(a,b>0\)\(\Rightarrow\) Áp dụng bất đẳng thức cộng mẫu ta có:

\(\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}=\frac{4}{1}=4\)

Vì \(a,b>0\)\(\Rightarrow\)Áp dụng bđt Cô si ta có: \(a+b\ge2\sqrt{ab}\)

\(\Rightarrow2\sqrt{ab}\le1\)\(\Rightarrow\left(2\sqrt{ab}\right)^2\le1\)

\(\Leftrightarrow4ab\le1\)\(\Leftrightarrow2ab\le\frac{1}{2}\)\(\Rightarrow\frac{1}{2ab}\ge2\)

\(\Rightarrow C=\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge4+2=6\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)

Vậy \(minC=6\)\(\Leftrightarrow x=y=\frac{1}{2}\)

18 tháng 10 2020

bài này đã có rất nhiều bạn hỏi rồi 

Ta có hai bất đẳng thức phụ quen thuộc sau : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(*) ; \(2xy\le\frac{\left(x+y\right)^2}{2}\)(**)

BĐT(*) \(< =>\frac{x+y}{xy}\ge\frac{4}{x+y}< =>x^2+2xy+y^2\ge4xy< =>\left(x-y\right)^2\ge0\)(đúng)

BĐT(**)\(< =>x^2+2xy+y^2\ge4xy< =>\left(x-y\right)^2\ge0\)(đúng

Lại có  \(C=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}\)

Sử dụng bất đẳng thức phụ (*) : \(C\ge\frac{1}{2ab}+\frac{4}{a^2+2ab+b^2}=\frac{1}{2ab}+\frac{4}{\left(a+b\right)^2}=\frac{1}{2ab}+4\)

Sử dụng bất đẳng thức phụ (**)  : \(\frac{1}{2ab}+4\ge\frac{1}{\frac{\left(a+b\right)^2}{2}}+4=2+4=6\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=\frac{1}{2}\)

Vậy GTNN của C = 6 đạt được khi a = b = 1/2 

NV
23 tháng 4 2021

\(2a\ge ab+4\ge2\sqrt{4ab}=4\sqrt{ab}\Rightarrow\sqrt{\dfrac{a}{b}}\ge2\Rightarrow\dfrac{a}{b}\ge4\)

\(T=\dfrac{a}{b}+\dfrac{2b}{a}=\dfrac{a}{8b}+\dfrac{2b}{a}+\dfrac{7}{8}.\dfrac{a}{b}\ge2\sqrt{\dfrac{2ab}{8ab}}+\dfrac{7}{8}.4=\dfrac{9}{2}\)

\(T_{min}=\dfrac{9}{2}\) khi \(\left(a;b\right)=\left(4;1\right)\)