Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cau 1: Ta có:
A=x^2 - 2*3x + 9 +2(y^2 - 2y +1) + 7
=(x-3)^2 +2(y-1)^2 +7 >+ 7
=> minA= 7 <=> x=3 và y=1
Ta có:
\(a+b\ge2\sqrt{ab}\)
\(\Rightarrow1\ge2\sqrt{ab}\)
\(\Leftrightarrow ab\le\frac{1}{4}\)
Quay lại bài toán ta có:
\(K=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)\)
\(\ge\frac{1}{\frac{2}{4}}+\frac{4}{\left(a+b\right)^2}=2+4=6\)
Dấu = xảy ra khi \(a=b=\frac{1}{2}\)
Có: \(a^2+b^2\ge2ab\Rightarrow a^2+b^2\ge2\)
\(\Rightarrow\left(a+b+1\right)\left(a^2+b^2\right)\ge2\left(a+b+1\right)\)
\(\Rightarrow Q\ge2\left(a+b\right)+\frac{8}{a+b}+2\)
Mà: \(2\left(a+b\right)+\frac{8}{a+b}\ge2\sqrt{2\left(a+b\right).\frac{8}{a+b}}=8\)
\(\Rightarrow Q\ge10\)
Dấu "=" xảy ra <=> a=b=1
\(2.\) Bạn nghiêm túc gửi câu hỏi nhé!. Mình có lời giải rồi