K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2022

A B C H D K M N

a/

Xét tg vuông AHC và tg vuông DHC

HA=HD (gt)

HC chung

=> tg AHC = tg DHC (hai tg vuông có 2 cạnh góc vuông bằng nhau)

b/

Ta có

HA=HD (gt) => CH là trung tuyến thuộc cạnh AD của tg ADC

DK là trung tuyến thuộc cạnh AC của tg ADC (gt)

=> M là trọng tâm của tg ADC => AM là trung tuyến thuộc cạnh CD của tg ADC (trong tg 3 đường trung tuyến đồng quy)

=> AM phải đi qua trung điểm N của CD => A; M; N thẳng hàng

a: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)

b: Xét ΔHAC vuông tại H và ΔHDC vuông tại H có

CH chung

HA=HD

DO đó: ΔHAC=ΔHDC

AH
Akai Haruma
Giáo viên
8 tháng 5 2022

Lời giải:

a. Áp dụng định lý Pitago:

$AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8$ (cm) 

b.

Theo đề thì $AD\perp BC$ và $AD\perp BC$ tại trung điểm $H$ của $AD$ nên $BC$ là đường trung trực của $AD$

$\Rightarrow CD=CA$

Xét tam giác $AHC$ và $DHC$ có:
$AH=DH$ (gt) 
$HC$ chung 

$AC=DC$ (cmt) 

$\Rightarrow \triangle AHC=\triangle DHC$ (c.c.c)

 

AH
Akai Haruma
Giáo viên
8 tháng 5 2022

Hình vẽ:

a AC=8cm

b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có

HA=HD

HC chung

=>ΔAHC=ΔDHC

 

a: AC=căn 10^2-6^2=8cm

b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có

HC chung

HA=HD

=>ΔAHC=ΔDHC

 

a, Xét ∆AHC và ∆DHC có:

+CH chung

+\(\widehat{CHA}=\widehat{CHD}\left(=90^o\right)\)

+HA=HC(gt)

\(\Rightarrow\)∆HCA=∆HCD(ch-cgv)

 

19 tháng 7 2023

A B C H D E K

a/ Xét tg vuông AHC và tg vuông DHC có

HC chung

HA = HD (gt)

=> tg AHC = tg DHC (Hai tg vuông có 2 cạnh góc vuông bằng nhau)

b/ K là giao của AE và CD

Xét tg vuông ABC có

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với góc \(\widehat{ABC}\) ) (1)

tg AHC = tg DHC (cmt) => \(\widehat{DCH}=\widehat{ACB}\) (2)

Xét tg vuông ABH và tg vuông AEH có

AH chung; HB = HE (gt) => tg ABH = tg AEH (hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{BAH}=\widehat{EAH}\) (3)

Từ (1) (2) (3) => \(\widehat{EAH}=\widehat{DCH}\) (4)

Xét tg vuông AHE có

\(\widehat{EAH}+\widehat{AEH}=90^o\) (5)

Mà \(\widehat{AEH}=\widehat{CEK}\) (góc đối đỉnh) (6)

Từ (4) (5) (6) \(\Rightarrow\widehat{DCH}+\widehat{CEK}=90^o\Rightarrow\widehat{AKC}=90^o\)

\(\Rightarrow AK\perp CD\) mà \(CH\perp AD\) => E là trực tâm của tg ADC 

c/

tg ABH = tg AEH (cmt) => AB = AE

tg AHC = tg DHC (cmt) => AC = CD

Xét tg ABC có

\(AB+AC>BC\) (trong tg tổng độ dài 2 cạnh lớn hớn độ dài cạnh còn lại)

\(\Rightarrow AE+CD>BC\)

 

 

 

 

 

a) Xét ΔAHC vuông tại H và ΔDHC vuông tại H có 

CH chung

HA=HD(gt)

Do đó: ΔAHC=ΔDHC(hai cạnh góc vuông)

b) Ta có: AH=HD(gt)

mà H nằm giữa A và D(gt)

nên H là trung điểm của AD

Xét ΔDAK có 

H là trung điểm của AD(gt)

C là trung điểm của KD(gt)

Do đó: HC là đường trung bình của ΔDAK(Định nghĩa đường trung bình của tam giác)

Suy ra: HC//AK và \(HC=\dfrac{AK}{2}\)(Định lí 2 về đường trung bình của tam giác)

hay AK//BC(đpcm)

a: \(AB=\sqrt{BH^2+AH^2}=5\left(cm\right)\)

b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có

HC chung

HA=HD

Do đó:ΔAHC=ΔDHC

Suy ra: AC=DC

hay ΔACD cân tại C

c: Xét ΔBAD có 

BH là đường cao

BH là đường trung tuyến

Do đó: ΔABD cân tại B

Xét ΔBAC và ΔBDC có

BA=BD

AC=DC

BC chung

Do đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)

hayΔBDC vuông tại D

9 tháng 1 2016

A) Xét tam giác vuông AHC và tam giác vuông DHC, ta có

HA=HD(gt)

HC là cạnh chung

==> Tam giác AHC=Tam giác DHC( cạnh huyền-cạnh góc vuông )

25 tháng 4 2018

a)Xet 2 tam giac vuong AHB va DHC co:

HC chung 

DH = AH

=>\(\Delta\)AHB = \(\Delta\)AHC (2 canh goc vuong)

Ta co : CA=CD (2 canh tuong ung)

=>\(\Delta\)CAD can

b)