K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho hình vẽ sau:

loading...

Chứng minh $Bx$ // $Cy$.

2
26 tháng 8 2022

Vì \(\widehat{xBA}=\widehat{BAD}\left(=50^o\right)\) mà \(\widehat{xBA}\text{ và }\widehat{BAD}\) là 2 góc so le trong

=> Bx//AD (1)

Vì \(\widehat{DAC}=\widehat{ACy}\left(=30^o\right)\) mà \(\widehat{DAC}\text{ và }\widehat{ACy}\) là 2 góc so le trong

=> AD // Cy (2)

Từ (1) và (2) => Bx // Cy

26 tháng 8 2022

Ta có:

`@` \(\widehat{ABx}=\widehat{DAB}=50^o\)

`=>Bx////AD` ( 2 góc so le trong bằng nhau ) (1)

`@`\(\widehat{ACy}=\widehat{DAC}=30^o\)

`=>Cy////AD` ( 2 góc so le trong bằng nhau ) (2)

\(\left(1\right);\left(2\right)\Rightarrow\)`Bx////Cy`

Bạn tự vẽ hình nhé.

undefined

20 tháng 12 2022

Hình Tự Vẽ nhe

a)

Tam Giác ABC có:

E là trung điểm của AB (gt)

K là trung điểm của AC(gt)

=> EK là đường trung bình của tam giác ABC

=> EK//BC ( tính chất đường trung bình của tam giác )

b)

Tứ giác ABMC có:

BM//AC ( Bx//AC; M thuộc Bx)

CM//AB ( Cy//AB; M thuộc Cy )

Góc A = 90 độ (gt)

=> tứ giác ABMC là Hình chữ nhật

=> AB//MC (tính chất hình chữ nhật )

c)

Ta có: AB // KO ( Từ K vẽ đường thẳng song song với AB cắt BC tại O )

mà AB//MC(cmt) => MC//KO

Tam Giác ABC có:

K là trung điểm của AC (gt)

KO // AB ( Từ K vẽ đường thẳng song song với AB cắt BC tại O )

=> KO là đường trung bình của tam giác ABC 

=> O là trung điểm của BC ( tính chất đường trung bình trong tam giác )

tam giác AMC có:

K là trung điểm của AC (gt)

KO//MC (cmt)

=> KO là đường trung bình của tam giác AMC => O là trung điểm của AM ( tính chất đường trung bình trong tam giác )

Vì tứ giác ABMC là Hình chữ nhật => AM Cắt BC tại trung điểm của Mỗi đường mà O là trung điểm của AM và BC => AM cắt BC tại O => A;M;O Thẳng hàng

 

 

 

 

29 tháng 11 2023

a) Để chứng minh tứ giác ABDC là hình chữ nhật, ta cần chứng minh AB || CD và AB = CD.

 

Vì Bx vuông góc với AB, nên AB || Bx.

Vì Cy vuông góc với AC, nên AC || Cy.

Do đó, AB || CD.

 

Ta có:

- Góc ABC = 90 độ (vì tam giác ABC vuông tại A).

- Góc BAC = 90 độ (vì Bx vuông góc với AB).

- Góc ACB = 90 độ (vì Cy vuông góc với AC).

 

Vậy tứ giác ABDC có 4 góc vuông, tức là là hình chữ nhật.

 

b) Gọi M là điểm đối xứng của B qua A và N là điểm đối xứng của C qua A. Ta cần chứng minh tứ giác BCMN là hình thoi và AD = MC.

 

Vì M là điểm đối xứng của B qua A, nên AM = MB và góc AMB = góc BMA = 90 độ.

Vì N là điểm đối xứng của C qua A, nên AN = NC và góc ANC = góc CNA = 90 độ.

 

Do đó, ta có:

- AM = MB = MC (vì M là trung điểm của BC).

- AN = NC = NB (vì N là trung điểm của BC).

- Góc BMC = góc BMA + góc AMC = 90 độ + 90 độ = 180 độ (tổng các góc trong tứ giác là 360 độ).

 

Vậy tứ giác BCMN là hình thoi và AD = MC.

 

c) Gọi E là trung điểm của AC và F là trung điểm của MN. Ta cần chứng minh EF || ND.

 

Vì E là trung điểm của AC, nên AE = EC.

Vì F là trung điểm của MN, nên AF = FN.

 

Do đó, ta có:

- AE = EC = AF = FN.

- Góc AEF = góc AFE = góc NDF = góc NFD = 90 độ (vì E và F lần lượt là trung điểm của AC và MN).

 

Vậy EF || ND.

13 tháng 3 2023

giúp em với ạ e đg cần gấp ạ e c.ơn❤️

a: Xét tứ giác BHCD có 

BH//CD

CH//BD

Do đó:BHCD là hình bình hành

b: Ta có: BHCD là hình bình hành

nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HD

hay H,M,D thẳng hàng