Tim A biết:
A=1/2+1/4+1/8+1/32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
A=\(\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{128}-\frac{1}{256}\right)\)
A=\(1-\frac{1}{256}\)
A=\(\frac{255}{256}\)
A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
2A = 1/2 x 2 + 1/4 x 2 + 1/8 x 2 + 1/16 x 2 +1/32 x 2 + 1/64 x 1/128 + 1/256 x 2
2A = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
2A - A = ( 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 ) - ( 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 )
A = 1 - 1/256
A = 255/256
vì quá dễ nên mình không thể trả lời bạn được nhé!
Ta có: \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1< 2^{32}\)
\(\Leftrightarrow A< B\)
A = (2 - 1)(2 + 1)(2^2 + 1 )(2^4 + 1 ) (2^8 + 1)(2^16 + 1) ( nhân vói 2 - 1 = 1 Gía không thay dổi)
A = ( 2 ^2 - 1 )(2^2 + 1 )(2^4 + 1 )(2^8 + 1 )(2^16 + 1 )
A = ( 2^4 - 1 )(2^4 + 1)(2^8 + 1)(2^16 + 1)
A = (2^8 - 1)(2^8 + 1)(2^16 + 1)
A = (2^16 - 1)(2^16 + 1 )
A = 2^32 - 1 <2^32 = B
VẬy A < B
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(2\times A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(2\times A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)\)
\(A=1-\frac{1}{128}\)
\(A=\frac{127}{128}\)
\(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
\(2\times B=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\)
\(B=1-\frac{1}{16}=\frac{15}{16}\)
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(\Leftrightarrow4\times x+\frac{15}{16}=1\)
\(\Leftrightarrow4\times x=\frac{1}{16}\)
\(\Leftrightarrow x=\frac{1}{64}\)
Mình ghi nhầm đề bài 1 tí đề bài là :
So sánh 2 số A và B biết :
A = (3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1) và B = 3^32 - 1
a) \(\frac{-32}{\left(-2\right)^n}=4\)
=> (-2)n = -8
<=> (-2)n = (-2)3
<=> n = 3
b) \(\frac{8}{2^n}=2\)
=> 2n = 4
<=> 2n = 22
=> n = 2
c) \(\left(\frac{1}{2}\right)^{2n-1}=\frac{1}{8}\)
<=> \(\left(\frac{1}{2}\right)^{2n-1}=\left(\frac{1}{2}\right)^3\)
<=> 2n - 1 = 3
<=> 2n = 4
<=> n = 2
A = 1/2 + 1/4 + 1/8 + 1/32
A = 16/32 + 8/32 + 4/32 + 1/32
A = 60/32
A = 15/8
A = 1/2 + 1/4 + 1/8 + 1/32
A = 16/32 + 8/32 + 4/32 + 1/32
A = 29/32
sorry