Tìm chữ số a và b biết: 5a27b chia hết cho 3 và chia 5 dư 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để $\overline{5a27b}$ chia hết cho $2$ thì $b$ chẵn (1)
Để $\overline{5a27b}$ chia $5$ dư $1$ thì $b=6$ hoặc $b=1$ (2)
Kết hợp (1) và (2) suy ra $b=6$
Để $\overline{5a27b}$ chia $9$ dư $5$ thì $5+a+2+7+b=14+a+b=14+a+6=20+a$ chia $9$ dư $5$
$\Rightarrow a=3$
Vậy $a=3; b=6$
A=5a27b
b sẽ bằng 1 số chia hết cho 2 nhung chia 5 du 1.số đó là 6
A=5a276 có tổng bằng 5+a+2+7+6=20 để 5a276 có tổng bằng 23 thì số đó bằng 3
Vậy a=3; b=6 →A=53 276
NHỚ TK MK NHA
b: Đặt \(A=\overline{5a43b}\)
A chia hết cho 2 và 5 nên A có tận cùng là 0
=>b=0
=>\(A=\overline{5a430}\)
A chia hết cho 9
=>5+a+4+3+0 chia hết cho 9
=>a+12 chia hết cho 9
=>a=6
=>Số cần tìm là 56430
c: Đặt \(B=\overline{735a2b}\)
B chia hết cho 5 và không chia hết cho 2 nên b=5
=>\(B=\overline{735a25}\)
B chia hết cho 9
=>7+3+5+a+2+5 chia hết cho 9
=>a+22 chia hết cho 9
=>a=5
Vậy: Số cần tìm là 735525
d: Đặt \(C=\overline{5a27b}\)
C chia hết cho 2 và 5 nên C có tận cùng là 0
=>b=0
=>\(C=\overline{5a270}\)
C chia hết cho 9
=>5+a+2+7+0 chia hết cho 9
=>a+14 chia hết cho 9
=>a=4
Vậy: Số cần tìm là 54270
e: Đặt \(D=\overline{7a142b}\)
Vì D chia hết cho cả 2 và 5 nên D có tận cùng là 0
=>b=0
=>\(D=\overline{7a1420}\)
D chia hết cho 9
=>7+a+1+4+2+0 chia hết cho 9
=>a+14 chia hết cho 9
=>a=4
=>Số cần tìm là 741420
g: \(X=\overline{40ab}\)
X chia hết cho 2 và 5 nên b=0
=>\(X=\overline{40a0}\)
X chia hết cho 3
=>4+a+0+0 chia hết cho 3
=>a+4 chia hết cho 3
=>\(a\in\left\{2;5;8\right\}\)
Bài 1 :
a)
Ta có: 87ab ⋮ 9 ⇔ (8 + 7 + a + b) ⁝⋮ 9 ⇔ (15 + a + b) ⋮ 9
Suy ra: (a + b) ∈ {3; 12}
Vì a – b = 4 nên a + b > 3. Suy ra a + b = 12
Thay a = 4 + b vào a + b = 12, ta có:
b + (4 + b) = 12 ⇔ 2b = 12 – 4
⇔ 2b = 8 ⇔ b = 4
a = 4 + b = 4 + 4 = 8
Vậy ta có số: 8784.
b)
⇒ (7+a+5+b+1) chia hết cho 3
⇔ (13+a+b) chia hết cho 3
+ Vì a, b là chữ số, mà a-b=4
⇒ a,b ∈ (9;5) (8;4) (7;3) (6;2) (5;1) (4;0).
Thay vào biểu thức 7a5b1, ta được :
ĐA 1: a=9; b=5.
ĐA 2: a=6; b=2.
Bài 2 :
a/ \(\overline{53x8y}⋮2\) => y chẵn
\(\overline{53x8y}\) chia 5 dư 3 \(\Rightarrow y=\left\{3;8\right\}\) do y chẵn => y=8
\(\Rightarrow\overline{53x8y}=\overline{53x88}⋮9\Rightarrow5+3+x+8+8=x+24⋮9\Rightarrow x=3\)
b/ \(\overline{x184y}\) chia 2 có dư => y lẻ
\(\overline{x184y}⋮5\Rightarrow y=\left\{0;5\right\}\) do y lẻ => y=5
\(\Rightarrow\text{}\overline{x184y}=\overline{x1845}⋮9\Rightarrow x+1+8+4+5=x+18⋮9\Rightarrow x=\left\{0;9\right\}\)
a) chia 2&5=> b=0; chia 3=> 4+a+1+2+0 =7+a chia het cho 3=> a={2,5,8}
b) chia 2&5=> b=0; chia 9=> 5+a+4+3+0 =12+a chia het cho 9=> a={6}
c) chia 5=> b=[0,5]; chia 9=> 7+3+5+a+[0,5]=15+a+[0,5] chia hết cho 9=> (b,a)=(0,3); (5,7)
d) chia 2&5=> b=0; chia 3=> 5+a+2+7+0 =14+a chia het cho 9=> a={4}
a) a = 2 hoặc 5 hoặc 8
b = 0
b) a = 6
b = 0
c) a = 1 hoặc 5
b = 0 hoặc 5
d) a = 4
b = 0
Vì 5a27b chia 5 dư 1 \(\Rightarrow\left[{}\begin{matrix}b=1\\b=6\end{matrix}\right.\) ( do b là chữ số )
Vì 5a27b ⋮ 3 => 5+a+2+7+b ⋮ 3 => 14 + a + b ⋮ 3 mà \(\left[{}\begin{matrix}b=1\\b=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}14+a+1⋮3\\14+a+6⋮3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15+a⋮3\\20+a⋮3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a∈\left\{0;3;6;9\right\}\\a∈\left\{1;4;7\right\}\end{matrix}\right.\)
50271