B= 3/2 - 5/6 + 7/12 -...- 199/9900 + 201/10100
Giup mik với mn, plsssss
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3/2+13/12+31/30+...+9901/9900
= 1+1/2+1+1/12+1+1/30+...+1+1/9900
=1+1+1+...+1+1(50 cs)+1/2+1/12+1/30+...+1/9900
=50+1/2+1/12+1/30+...+1/9900
B=5/6+19/20+41/42+...+10099/10100
=(1-1/6)+(1-1/20)+(1-1/42)+...+(1-1/10100)
=1+1+...+1(50cs)-1/6-1/20-1/42-...-1/10100
A-B=(50+1/2+1/12+1/30+...+1/9900)-(50-1/6-1/20-1/42-...-1/10100)
=1/2+1/6+1/12+1/20+...+1/9900+1/10100
=1/1.2+1/2.3+1/3.4+1/4.5+...+1/99.100+1/100.101
=1-1/2+1/2-1/3+1/3-1/4+1/4-...+1/99-1/100+1/100-1/101
=1-1/101
=100/101
A = - ( 1+2+3 +....+ 202) = - 203. 101 = -20503
B= ( 1+2-3-4) + ( 5+6-7-8) +..........+( 97+98 -99-100) + ( 101+102)
= -4 + (-4) .........+ (-4) + 203
= -4 .25 + 203 = 103
Vì: \(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}=0\),nên kết quả bằng 0
1/2 + 1/6 + 1/12 + ... + 1/9900 + 1/10100
= 1/1.2 + 1/2.3 + 1/3.4 +... +1/99.100 + 1/100.101
= 1/1 - 1/2 + 1/2 + 1/3 - 1/3 + 1/4 +... + 1/99 - 1 / 100 + 1/100 - 1/101
= 1/1 - 1/101
= 100 /101
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{9900}+\frac{1}{10100}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{99.100}+\frac{1}{100.101}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
=\(1-\frac{1}{101}\)
=\(\frac{100}{101}\)
Ta có: \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}+\frac{1}{10100}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}+\frac{1}{100.101}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
\(B=\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}-...-\dfrac{199}{9900}+\dfrac{201}{10100}\)
\(=\dfrac{1+2}{1\times2}-\dfrac{2+3}{2\times3}+\dfrac{3\times4}{3\times4}-...-\dfrac{99+100}{99\times100}+\dfrac{100+101}{100\times101}\)
\(=1+\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}-...-\dfrac{1}{99}-\dfrac{1}{100}+\dfrac{1}{100}+\dfrac{1}{101}\)
\(=1+\dfrac{1}{101}=\dfrac{102}{101}\)