chứng minh
\(\dfrac{2}{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=1\)\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=1\)
\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}=1\)
\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=1\)
\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=1\)
\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)
\(\Leftrightarrow\sqrt{1}=1\) (đpcm)
Ta có: \(\dfrac{2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+\sqrt{2}}\)
\(=\dfrac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}\left(\sqrt{3}+1\right)}{\sqrt{2}\left(\sqrt{6}+1\right)}\)
\(=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)
\(=\dfrac{\sqrt{2}\left(3+\sqrt{5}\right)\left(\sqrt{6}+1\right)-\sqrt{15}-\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)
\(=\dfrac{\sqrt{2}\left(3\sqrt{6}+3+\sqrt{30}+\sqrt{5}\right)-\sqrt{15}-\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)
\(=\dfrac{6\sqrt{3}+3\sqrt{2}+2\sqrt{15}+\sqrt{10}-\sqrt{15}-\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)
\(=\dfrac{6\sqrt{3}+3\sqrt{2}+\sqrt{15}+\sqrt{10}-\sqrt{5}}{ }\)
Đề sai rồi bạn
\(\dfrac{\sqrt{8}+3}{\sqrt{17-3\sqrt{32}}}-\dfrac{3-2\sqrt{5}}{\sqrt{29-12\sqrt{5}}}-\dfrac{1}{\sqrt{12+2\sqrt{35}}}\)
\(=\dfrac{2\sqrt{2}+3}{\sqrt{17-12\sqrt{2}}}-\dfrac{3-2\sqrt{5}}{\sqrt{29-12\sqrt{5}}}-\dfrac{1}{\sqrt{12+2\sqrt{35}}}\)
\(=\dfrac{2\sqrt{2}+3}{\sqrt{3^2-2\cdot3\cdot2\sqrt{2}+\left(2\sqrt{2}\right)^2}}-\dfrac{3-2\sqrt{5}}{\sqrt{3^2-2\cdot3\cdot2\sqrt{5}+\left(2\sqrt{5}\right)^2}}-\dfrac{1}{\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}\cdot\sqrt{7}+\left(\sqrt{7}\right)^2}}\)
\(=\dfrac{2\sqrt{2}+3}{\sqrt{\left(2\sqrt{2}-3\right)^2}}-\dfrac{3-2\sqrt{5}}{\sqrt{\left(3-2\sqrt{5}\right)^2}}-\dfrac{1}{\sqrt{\left(\sqrt{5}+\sqrt{7}\right)^2}}\)
\(=\dfrac{2\sqrt{2}+3}{2\sqrt{2}-3}+\dfrac{3-2\sqrt{5}}{3-2\sqrt{5}}-\dfrac{1}{\sqrt{5}+\sqrt{7}}\)
\(=\dfrac{\left(2\sqrt{2}+3\right)^2}{\left(2\sqrt{2}+3\right)\left(2\sqrt{2}-3\right)}+1-\dfrac{\sqrt{5}-\sqrt{7}}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{5}-\sqrt{7}\right)}\)
\(=17-12\sqrt{2}+1-\dfrac{\sqrt{5}-\sqrt{7}}{2}\)
\(=\dfrac{2\cdot\left(18-12\sqrt{2}\right)}{2}-\dfrac{\sqrt{5}-\sqrt{7}}{2}\)
\(=\dfrac{36-24\sqrt{2}-\sqrt{5}+\sqrt{7}}{2}\)
Ta có: \(\dfrac{2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}\)
\(=\dfrac{\left(6+2\sqrt{5}\right)\sqrt{6-2\sqrt{5}}}{\sqrt{20}-2}-\dfrac{\sqrt{5}\left(\sqrt{3}+1\right)}{2\left(\sqrt{3}+1\right)}\)
\(=\dfrac{\left(6+2\sqrt{5}\right)\left(\sqrt{5}-1\right)}{2\left(\sqrt{5}-1\right)}-\dfrac{\sqrt{5}}{2}\)
\(=\dfrac{6+2\sqrt{5}-\sqrt{5}}{2}\)
\(=\dfrac{6-\sqrt{5}}{2}\)
3 bài đầu dễ tự làm nhé.
Bài 4:
\(B=\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
\(=\dfrac{\sqrt{\left(1-\sqrt{2}\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\dfrac{\sqrt{\left(1+\sqrt{2}\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\)
\(=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}-\dfrac{1+\sqrt{2}}{3+2\sqrt{2}}\)
\(=\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(1+\sqrt{2}\right)\left(3-2\sqrt{2}\right)\)
\(=3\sqrt{2}+4-3-2\sqrt{2}-\left(3-2\sqrt{2}+3\sqrt{2}-4\right)\)
\(=3\sqrt{2}+4-3-2\sqrt{2}-\left(-1+\sqrt{2}\right)\)
\(=3\sqrt{2}+4-3-2\sqrt{2}+1-\sqrt{2}\)
\(=0+2\)
\(=2\)
Vậy B là số tự nhiên.
1.
a) nhân cả tử lẫn mẫu với 1+ \(\sqrt{2}-\sqrt{5}\)
b) tương tự a
2.
a) tách 29 = 20 + 9 là ra hằng đẳng thức, tiếp tục.
2, a, \(a+\dfrac{1}{a}\ge2\)
\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)
\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)
vậy...................
Câu 1:
\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}=3\)
\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)
\(B=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{1}\cdot\dfrac{\sqrt{x}-1}{2}\)
\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)
Ta có: \(x=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=1\)
Thay x=1 vào B, ta được:
\(B=-\sqrt{1}\cdot\left(\sqrt{1}-1\right)=0\)
\(VT=\left(\dfrac{\sqrt{14.14}}{\sqrt{14}}+\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{5}}\right).\sqrt{5-\sqrt{21}}\)
\(=\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
\(=\sqrt{30-6\sqrt{21}}+\sqrt{70-14\sqrt{21}}\)
\(=\sqrt{21-2.3\sqrt{21}+9}+\sqrt{21-2.7.\sqrt{21}+49}\)
\(=\sqrt{\left(\sqrt{21}-3\right)^2}+\sqrt{\left(7-\sqrt{21}\right)^2}\)
\(=\sqrt{21}-3+7-\sqrt{21}=4\)
a: \(=\left(2\sqrt{2}-5\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=\left(-3\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=\left(-3\sqrt{10}+10\right)\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=-9-30\sqrt{10}+3\sqrt{10}+100=91-27\sqrt{10}\)
b: \(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}\cdot\left(\dfrac{5}{2}\sqrt{2}+12\right)\)
\(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\left(5\sqrt{3}+12\sqrt{6}\right)\)
\(=-60-144\sqrt{2}+30\sqrt{2}+144\)
\(=84-114\sqrt{2}\)
\(=\dfrac{2}{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=\dfrac{2}{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\dfrac{2}{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\dfrac{2}{\sqrt{5}-\sqrt{5}+1}=2\)