K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2019

bài này h bạn tìm đenta

sau đó cho đenta lớn hơn 0

sau đó đc kq là gì ib cho mik mik ns tiếp cho

23 tháng 4 2019

Hoành độ giao điểm (d) và (P) là nghiệm của pt

\(x^2-mx-3=0\)

Có \(\Delta=m^2+3>0\forall m\)

Nên pt trên có 2 nghiệm phân biệt

GỌi A(x1;y1) và B(x2;y2) là 2 giao điểm (d) và (P)

Theo Vi=ét \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-3\end{cases}}\)

VÌ A;B thuộc parabol => y1 = x12     ; y2 = x22

Ta có \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)

\(\Rightarrow AB^2=\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2\)

               \(=\left(x_1+x_2\right)^2-4x_1x_2+\left(x_1^2-x_2^2\right)^2\)

              \(=m^2+12+\left(x_1+x_2\right)^2\left(x_1-x_2\right)^2\)

                 \(=m^2+12+m^2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]\)

                \(=m^2+12+m^2\left(m^2+12\right)\)

               \(=m^4+13m^2+12\ge0+0+12=12\)

\(\Rightarrow AB\ge\sqrt{12}=2\sqrt{3}\left(Do....AB>0\right)\)

Dấu "=" xảy ra <=> m = 0

Vậy .......

a: PTHĐGĐ là;

1/2x^2-mx-2=0

a=1/2; b=-m; c=-2

Vì a*c<0 nên (d) luôn cắt (P) tại hai điểm phân biệt

a: PTHĐGĐ là;

-1/4x^2-mx+m+2=0

=>1/4x^2+mx-m-2=0

=>x^2+4mx-4m-8=0

\(\text{Δ}=\left(4m\right)^2-4\left(-4m-8\right)\)

\(=16m^2+16m+32\)

\(=16m^2+2\cdot4m\cdot2+4+28=\left(4m+2\right)^2+28>0\)

=>Phương trình luôn có hai nghiệm phân biệt

b: \(A=x_1\cdot x_2\left(x_1+x_2\right)\)

\(=4m\left(4m+8\right)\)

\(=\left(16m^2+32m+16-16\right)\)

\(=\left(4m+4\right)^2-16>=-16\)

Dấu = xảy ra khi m=-1

23 tháng 2 2023

 

\

Phương trình hoành độ giao điểm là:

\(x^2-mx+2m-4=0\)

\(\Delta=\left(-m\right)^2-4\left(2m-4\right)\)

\(=m^2-8m+16=\left(m-4\right)^2\)

Để (P) cắt (d) tại hai điểm phân biệt thì m-4<>0

hay m<>4

Ta có: \(x_1^2+x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=m^2-2\left(2m-4\right)\)

\(=m^2-4m+8\)

\(=\left(m-2\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi m=2

27 tháng 12 2019

1 tháng 6 2021

*Phương trình hoành độ giao điểm của đường thẳng và Parabol là: 

\(\dfrac{1}{4}x^2=mx+2\Leftrightarrow\dfrac{1}{4}x^2-mx-2=0\) (1)

Ta có: \(\Delta=\left(-m\right)^2-4\cdot\dfrac{1}{4}\cdot\left(-2\right)=m^2+2>0\forall m\)

nên (1) có 2 nghiệm phân biệt 

Vậy (P) và (d) cắt nhau tại 2 điểm phân biệt

*Theo hệ thức vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=-2\end{matrix}\right.\)

...https://olm.vn/hoi-dap/detail/102321288521.html tham khảo ở đây 

 

4 tháng 5 2023

a (tóm tắt lại): Phương trình hoành độ giao điểm của (P) và (d):

\(x^2=mx-m+1\)

\(\Leftrightarrow x^2-mx+m-1=0\left(1\right)\)

Để (d) cắt (P) tại 2 điểm phân biệt thì phương trình (1) phải có 2 nghiệm phân biệt. Do đó \(\Delta>0\Leftrightarrow m\ne2\).

b) \(\left(1\right)\Leftrightarrow\left(x-1\right)\left(x+1\right)-m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=m-1\end{matrix}\right.\)

Do đó phương trình (1) có 2 nghiệm là x=1 và x=m-1. Mặt khác phương trình (1) cũng có 2 nghiệm phân biệt là x1, xvà vai trò của x1, x2 trong biểu thức A là như nhau nên ta giả sử \(x_1=1;x_2=m-1\left(m\ne2\right)\)

Từ đây ta có:

\(A=\dfrac{2.1.\left(m-1\right)}{1^2+\left(m-1\right)^2+2\left[1+1.\left(m-1\right)\right]}\)

\(=\dfrac{2\left(m-1\right)}{1+\left(m-1\right)^2+2+2\left(m-1\right)}\)

\(=\dfrac{2\left(m-1\right)}{1+\left(m^2-2m+1\right)+2+2m-2}=2.\dfrac{m-1}{m^2+2}\)

\(\Rightarrow A\left(m^2+2\right)=2\left(m-1\right)\)

\(\Leftrightarrow Am^2-2m+2\left(A+1\right)=0\left(2\right)\)

Coi phương trình (2) là phương trình bậc 2 tham số A ẩn x, ta có:

\(\Delta'\left(2\right)=1^2-2A\left(A+1\right)=-2\left(A^2+A\right)+1=-2\left(A+\dfrac{1}{2}\right)^2+\dfrac{3}{2}\)

Để phương trình (2) có nghiệm thì \(\Delta'\left(2\right)\ge0\Rightarrow-2\left(A+\dfrac{1}{2}\right)^2+\dfrac{3}{2}\ge0\)

\(\Leftrightarrow\left(A+\dfrac{1}{2}\right)^2\le\dfrac{3}{4}\)

\(\Leftrightarrow-\dfrac{\sqrt{3}}{2}\le A+\dfrac{1}{2}\le\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow-\dfrac{\sqrt{3}+1}{2}\le A\le\dfrac{\sqrt{3}-1}{2}\)

Để phương trình (2) có nghiệm kép thì: \(\Delta'\left(2\right)=0\Rightarrow m=\dfrac{1}{A}\)

\(MinA=-\dfrac{\sqrt{3}+1}{2}\Leftrightarrow\Delta'\left(2\right)=0\Leftrightarrow m=\dfrac{1}{A}\dfrac{1}{-\dfrac{\sqrt{3}+1}{2}}=1-\sqrt{3}\)

\(MaxA=\dfrac{\sqrt{3}-1}{2}\Leftrightarrow\Delta'\left(2\right)=0\Leftrightarrow m=\dfrac{1}{A}=\dfrac{1}{\dfrac{\sqrt{3}-1}{2}}=\sqrt{3}+1\)

4 tháng 5 2023

Mình mới sửa một chút nhé.

\(\left(A+\dfrac{1}{2}\right)^2\le\dfrac{3}{4}\) \(\Leftrightarrow\left|A+\dfrac{1}{2}\right|\le\dfrac{\sqrt{3}}{2}\Leftrightarrow\left[{}\begin{matrix}A+\dfrac{1}{2}\le\dfrac{\sqrt{3}}{2}\\A+\dfrac{1}{2}\ge\dfrac{-\sqrt{3}}{2}\end{matrix}\right.\Leftrightarrow\dfrac{-\sqrt{3}}{2}\le A+\dfrac{1}{2}\le\dfrac{\sqrt{3}}{2}\)

Nếu gặp dạng \(a^2\le b\) (b là số dương) thì a sẽ bé hơn b và lớn hơn số đối của b, nói chung a nằm trong khoảng từ -b đến b.

Ví dụ: \(a^2\le4\Leftrightarrow\left|a\right|\le2\Leftrightarrow-2\le a\le2\)