Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,M\in\left(d\right)\Rightarrow a.0+b.2=-2\)
\(\Rightarrow b=-1\)
\(\Rightarrow\left(d\right)ax-y=-2\)
\(\Rightarrow\left(d\right)y=ax+2\)
Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình
\(\frac{x^2}{4}=ax+2\)
\(\Leftrightarrow x^2-4ax-8=0\)(1)
Có \(\Delta'=4a^2+8>0\)
Nên pt (1) luôn có 2 nghiệm phân biệt
=> (d) luôn cắt (P) tại 2 điểm phân biệt A và B
b, Gọi 2 điểm A và B có tọa độ là \(A\left(x_1;y_1\right);B\left(x_2;y_2\right)\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=4a\\x_1x_2=-8\end{cases}}\)
Vì \(A;B\in\left(P\right)\Rightarrow\hept{\begin{cases}y_1=\frac{x_1^2}{4}\\y_2=\frac{x_2^2}{4}\end{cases}}\)
Ta có \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\left(y_1+y_2\right)^2-4y_1y_2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\left(\frac{x_1^2+x_2^2}{4}\right)^2-4.\frac{x_1^2x_2^2}{4.4}}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\frac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{4}-\frac{x_1^2x_2^2}{4}}\)
\(=\sqrt{16a^2+32+\frac{\left(16a^2+16\right)^2}{4}-\frac{64}{4}}\)
\(\ge\sqrt{16.0+32+\frac{\left(16.0+16\right)^2}{4}-\frac{64}{4}}=4\sqrt{5}\)
Dấu "=" <=> a = 0
bài này h bạn tìm đenta
sau đó cho đenta lớn hơn 0
sau đó đc kq là gì ib cho mik mik ns tiếp cho
Hoành độ giao điểm (d) và (P) là nghiệm của pt
\(x^2-mx-3=0\)
Có \(\Delta=m^2+3>0\forall m\)
Nên pt trên có 2 nghiệm phân biệt
GỌi A(x1;y1) và B(x2;y2) là 2 giao điểm (d) và (P)
Theo Vi=ét \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-3\end{cases}}\)
VÌ A;B thuộc parabol => y1 = x12 ; y2 = x22
Ta có \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)
\(\Rightarrow AB^2=\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2\)
\(=\left(x_1+x_2\right)^2-4x_1x_2+\left(x_1^2-x_2^2\right)^2\)
\(=m^2+12+\left(x_1+x_2\right)^2\left(x_1-x_2\right)^2\)
\(=m^2+12+m^2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]\)
\(=m^2+12+m^2\left(m^2+12\right)\)
\(=m^4+13m^2+12\ge0+0+12=12\)
\(\Rightarrow AB\ge\sqrt{12}=2\sqrt{3}\left(Do....AB>0\right)\)
Dấu "=" xảy ra <=> m = 0
Vậy .......
a: PTHĐGĐ là;
-1/4x^2-mx+m+2=0
=>1/4x^2+mx-m-2=0
=>x^2+4mx-4m-8=0
\(\text{Δ}=\left(4m\right)^2-4\left(-4m-8\right)\)
\(=16m^2+16m+32\)
\(=16m^2+2\cdot4m\cdot2+4+28=\left(4m+2\right)^2+28>0\)
=>Phương trình luôn có hai nghiệm phân biệt
b: \(A=x_1\cdot x_2\left(x_1+x_2\right)\)
\(=4m\left(4m+8\right)\)
\(=\left(16m^2+32m+16-16\right)\)
\(=\left(4m+4\right)^2-16>=-16\)
Dấu = xảy ra khi m=-1
a) Xét phương trình hoành độ giao điểm
\(x^2=-x+2\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-2\Rightarrow y=4\end{matrix}\right.\)
Vậy tọa độ giao điểm là \(\left(1;1\right)\) và \(\left(-2;4\right)\)
a: PTHĐGĐ là;
1/2x^2-mx-2=0
a=1/2; b=-m; c=-2
Vì a*c<0 nên (d) luôn cắt (P) tại hai điểm phân biệt