Cho hình thang ABCD có đáy nhỏ AB = 2 cm, đáy lớn CD = 8 cm. Biết AC cắt BD tại O cho SBOC = 20 cm2
a,Chứng minh SABD = \(\dfrac{1}{4}\) SBDC
b,Tính SABC
c,Tính SABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔOAB và ΔOCD có
\(\widehat{AOB}=\widehat{COD}\)
\(\widehat{OAB}=\widehat{OCD}\)
Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}=\dfrac{1}{2}\)
Vì ABCD là hình thang có AC cắt BD tại O
nên \(S_{AOD}=S_{BOC}=15\left(cm^2\right)\)
\(\dfrac{OA}{OC}=\dfrac{1}{2}\)
=>\(S_{AOB}=\dfrac{1}{2}\cdot S_{BOC}\)
=>\(S_{AOB}=\dfrac{1}{2}\cdot15=7,5\left(cm^2\right)\)
\(\dfrac{OA}{OC}=\dfrac{1}{2}\)
=>\(\dfrac{S_{OAD}}{S_{DOC}}=\dfrac{AO}{OC}=\dfrac{1}{2}\)
=>\(S_{DOC}=30\left(cm^2\right)\)
\(S_{ABCD}=S_{AOB}+S_{BOC}+S_{DOC}+S_{AOD}\)
\(=30+15+15+7,5=52,5\left(cm^2\right)\)
Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng vơi ΔOCD
=>\(\dfrac{S_{OAB}}{S_{OCD}}=\left(\dfrac{AB}{CD}\right)^2=\dfrac{1}{9}\) và OA/OC=AB/CD=1/3
=>\(S_{OCD}=54\left(cm^2\right)\) và \(S_{BOC}=3\cdot S_{BOA}=3\cdot6=18\left(cm^2\right)\)
=>\(S_{AOD}=18\left(cm^2\right)\)
\(S_{ABCD}=18+18+54+6=60+36=96\left(cm^2\right)\)
a/
Hai tg ABD và tg ABC có chung AB và đường cao từ D->AB = đường cao từ C->AB nên \(S_{ABD}=S_{ABC}\)
Hai tg này có phần diện tích chung là \(S_{ABO}\Rightarrow S_{AOD}=S_{BOC}\)
b/
Hai tg ABC và tg ACD có đg cao từ D->AB = đường cao từ B->CD nên
\(\dfrac{S_{ABC}}{S_{ACD}}=\dfrac{AB}{CD}=\dfrac{1}{2}\)
Hai tg trên có chung AC nên
\(\dfrac{S_{ABC}}{S_{ACD}}=\) đg cao từ B->AC / đg cao từ D->AC\(=\dfrac{1}{2}\)
Hai tg ABO và tg AOD có chung AO nên
\(\dfrac{S_{ABO}}{S_{AOD}}=\) đg cao từ B->AC / đg cao từ D->AC\(=\dfrac{1}{2}\)
\(\Rightarrow S_{AOD}=2xS_{ABO}=2x3,5=7cm^2\)
\(\Rightarrow S_{ABD}=S_{ABO}+S_{AOD}=3,5+7=10,5cm^2\)
Hai tg ABD và tg BCD có đg cao từ D->AB = đường cao từ B->CD nên
\(\dfrac{S_{ABD}}{S_{BCD}}=\dfrac{AB}{CD}=\dfrac{1}{2}\Rightarrow S_{BCD}=2xS_{ABD}=2x10,5=21cm^2\)
\(\Rightarrow S_{ABCD}=S_{ABD}+S_{BCD}=10,5+21=31,5cm^2\)