K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2014

Đây là bài toán cấp số nhân: với q=3

Ta có:

A         = 3+3^2+3^3+3^4+...+3^100

3A       =     3^2+3^3+3^4+...+3^100+3^101

A-3A   =  3-3^101 

=>2A  = 3^101-3

=>2A+3= 3^101=3^n

=>n= 101

Giờ đã đi làm, đã có con, giải lại bài toán cấp nhỏ vui ngê, làm nhớ lại thời còn đi học. Cố lên nha các cháu ^^

 


 

1 tháng 11 2019

A=1+1+3+3^2+3^3+...+3^2018

A=1+(1+3+3^2+3^3+...+3^2018)

Đặt:

B=1+3+3^2+3^3+...+3^2018

3B=3.(1+3+3^2+3^3+...+3^2018)

3B=3+3^2+3^3+...+3^2018+3^2019

3B=1+3^2+3^3+...+3^2018+3^2019-1

3B=B+3^2019-1

3B-B=B+3^2019-1-B

2B=3^2019-1

=>2A=2B+1

=3^2019-1+1

=3^2019

2A-1

=3^2019-1

=3^n-1

3^n-1=3^2019-1

=>n=2019

Vậy n=2019

14 tháng 12 2022

A= 3 + 32 + 33 + ... + 3100

3A = 32 + 33 + 34 + ... + 3101

3A - A = (32 + 33 + 34 + ... + 3101) - (3 + 32 + 33 + ... + 3100)

2A = 3101 - 3

Ta có: 2A + 3        = 34n+1

       = 3101 - 3 + 1 = 34n+1

       = 3101               = 34n+1

=> 4n + 1 =101

      4n = 101 - 1

     4n = 100

       n = 100 : 4

       n = 25

14 tháng 12 2022

         A   = 3 + 32 + 33 + 34 +......+ 3100

        3A =       32 + 33 + 34+.........+ 3100+ 3101

  3A -  A =        3101 - 3

       2A  =         3101 - 3 

   2A + 3 = 3101 - 3 + 3 = 3101

    2A + 3  = 34n+1 ⇔ 3101 = 34n+1

                                   101 = 4n + 1

                                     4n = 101  - 1

                                     4n  = 100

                                       n = 100 : 4

                                       n = 25

24 tháng 4 2016

A=\(3+3^2+3^3+...+3^{100}\)

3A=\(3^2+3^3+3^4+...+3^{101}\)

3A - A=\(3^2+3^3+3^4+...+3^{101}-3-3^2-3^3-...-3^{100}\)

 2A = \(3^{101}-3\)

 =>\(2A+3=3^n\)

 =>\(3^{101}-3+3=3^n\)

 =>3\(^{101}=3^n\)

=>n=101

15 tháng 8 2015

=>3A=32+32+…+3101

=>3A-A=32+33+…+3101-3-32-…-3100

=>2A=3101-3

=>2A+3=3101=3N

=>N=101

Vậy N=101

15 tháng 8 2015

3A = \(3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)\)- \(\left(3+3^2+3^3+..+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\Rightarrow2A+3=3^{101}\)
Vậy n = 101

29 tháng 11 2019

Ta có : A = 5 + 32 + 33 + ... + 32018

<=> A = 1 + 1 + 3 + 32 + 33 + ... + 32018

=> 3A = 3 + 3 + 32 + 33 + 34 + ... + 32019 

Lấy 3A trừ A ta có : 

3A - A = (3 + 3 + 32 + 33 + 34 + ... + 32018 + 32019 ) - (1 + 1 + 3 + 32 + 33 + ... + 32018)

    2A  = 32019 + 3 - 2

    2A  = 32019 + 1

    2A - 1 = 32019

<=> 3n = 32019

=> n = 2019

Vậy n = 2019

29 tháng 11 2019

thank you

22 tháng 10 2023

nhanh tích cho nhee

22 tháng 10 2023

tui làm b nha do a không biết làm

A=5+32+33+...+32018

3A=15+33+34+...+32019

3A-A=(15+33+34+...+32019)-(5+32+33+...+32018)

2A=32019+15-(5+32)

2A=32019+15-14

2A=32019+1

2A-1=32019+1-1

2A-1=32019

vậy n = 2019