cho x,y thỏa mãn (x-y)^4 +(2x-1)^6 nhỏ hơn hoặc bằng 0. Tính M= 5x^3+4y^4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lớn hơn hoặc bằng ba căn ba nhé bạn. sorry nha, minh quên mất
\(2x+y=\frac{x}{2}+\frac{x}{2}+\frac{x}{2}+\frac{x}{2}+y\ge5\sqrt[5]{\frac{x^4y}{16}}\)
\(5x^2+5y^2=\frac{5}{4}x^2+\frac{5}{4}x^2+\frac{5}{4}x^2+\frac{5}{4}x^2+5y^2\ge5\sqrt[5]{\frac{5^5}{4^4}x^8y^2}=5^2.\sqrt[5]{\frac{1}{4^4}}.\left(\sqrt[5]{x^4y}\right)^2\)
\(\Rightarrow\sqrt{5x^2+5y^2}\ge5.\sqrt[5]{\frac{1}{2^4}}.\sqrt[5]{x^4y}\)
\(10=2x+y+\sqrt{5x^2+5y^2}\ge10.\sqrt[5]{\frac{1}{16}}\sqrt[5]{x^4y}\)
\(\Rightarrow\sqrt[5]{x^4y}\le\sqrt[5]{16}\)\(\Rightarrow x^4y\le16\)
\(A=\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\)
\(\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)
\(=\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{4}{4}=1\)
** Bổ sung điều kiện $x,y$ là số nguyên.
a/
$(5x-1)(y+1)=4$
Với $x,y$ nguyên thì $5x-1, y+1$ nguyên. Mà tích của chúng bằng 4 nên ta có các trường hợp sau:
TH1: $5x-1=1, y+1=4\Rightarrow x=\frac{2}{5}$ (loại)
TH2: $5x-1=-1, y+1=-4\Rightarrow x=0; y=-5$
TH3: $5x-1=2, y+1=2\Rightarrow x=\frac{3}{5}$ (loại)
TH4: $5x-1=-2, y+1=-2\Rightarrow x=\frac{-1}{5}$ (loại)
TH5: $5x-1=4, y+1=1\Rightarrow x=1; y=0$
TH6: $5x-1=-4; y+1=-1\Rightarrow x=\frac{-3}{5}$ (loại)
Vậy......
b/
$xy-7y+5x=0$
$y(x-7)+5(x-7)=-35$
$(x-7)(y+5)=-35$
Vì $x,y$ nguyên nên $x-7, y+5$ nguyên. $(x-7)(y+5)=-35\Rightarrow x-7$ là ước của $-35$.
Mà $x\geq 3\Rightarrow x-7\geq -4$
$\Rightarrow x-7\in \left\{-1; 1; 5; 7; 35\right\}$
Nếu $x-7=-1\Rightarrow y+5=35$
$\Rightarrow x=6; y=30$
Nếu $x-7=1\Rightarrow y+5=-35$
$\Rightarrow x=8; y=-40$
Nếu $x-7=5\Rightarrow y+5=-7$
$\Rightarrow x=12; y=-12$
Nếu $x-7=7\Rightarrow y+5=-5$
$\Rightarrow x=14; y=-10$
Nếu $x-7=35; y+5=-1$
$\Rightarrow x=42; y=-6$
log x 2 + y 2 + 2 4 x + 4 y - 4 ≥ 1
⇔ 4 x + 4 y - 4 ≥ x 2 + y 2 + 2 ⇔ x - 2 2 + y - 2 2 ≤ 2
Đây là tập hợp tất cả các điểm nằm trên và trong đường tròn tâm I(2;2) bán kính ℝ ' = m .
Ta có I I ' = 10 . m nhỏ nhất để tồn tại duy nhất cặp (x;y) sao cho x 2 + y 2 + 2 x - 2 y + 2 - m = 0 thì hai đường tròn nói trên tiếp xúc ngoài
⇒ R + R ' = I I ' ⇔ m + 2 = 10 ⇔ m = 10 - 2 2
Đáp án cần chọn là B
Ta có \(\left(x-y\right)^4+\left(2x-1\right)^6\ge0\)
-> dấu ''='' xảy ra khi x = y = 1/2
\(M=\dfrac{5.1}{8}+\dfrac{4.1}{16}=\dfrac{5}{8}+\dfrac{1}{4}=\dfrac{28}{32}=\dfrac{7}{8}\)