K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

3 (22 + 1)(24 + 1)(28 + 1)(216 + 1)

=(22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

=(24 - 1)(24 + 1)(28 + 1)(216 + 1)

=(28 - 1)(28 + 1)(216 + 1)

=(216 - 1)(216 + 1)

=232 -1

20 tháng 12 2016

cam on

11 tháng 12 2020

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

a) Ta có: \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

29 tháng 3 2019

Ta có

N   =   ( 2   +   1 ) ( 2 2   +   1 ) ( 2 4   +   1 ) ( 2 8   +   1 ) ( 2 16   +   1 )     ( 2 16   +   1 )   =   3 ( 2 2   +   1 ) ( 2 4   +   1 ) ( 2 8   +   1 )     ( 2 16   +   1 )   =   [ ( 2 2   –   1 ) ( 2 2   +   1 ) ] ( 2 4   +   1 ) ( 2 8   +   1 ) ( 2 16   +   1 )     =   ( 2 4   –   1 ) ( 2 4   +   1 ) ( 2 8   +   1 ) ( 2 16   +   1 )     =   ( 2 8   –   1 ) ( 2 8   +   1 ) ( 2 16   +   1 )     =   ( 2 16   -   1 ) ( 2 16   +   1 )   = 2 16 2 − 1 = 2 32 − 1 M à   2 32 − 1 > 2 32 ⇒   N < M

Đáp án cần chọn là: A

9 tháng 7 2021

\(A=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

Đặt : \(P=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

19 tháng 6 2021

`A=(2-1)(2+1)(2^2+1)...(2^16+1)`

`=(2^2-1)(2^2+1)....(2^16+1)`

`=(2^4-1)....(2^16+1)`

`=2^32-1<2^32`

`=>A<B`

10 tháng 12 2023

1,

Đặt \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\left(2-1\right)A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(1A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(A=2^{32}-1\)

Vậy \(A=2^{32}-1\)

2, \(x^2-6x=-9\)

\(x^2-6x+9=0\)

\(\left(x-3\right)^2=0\)

\(x-3=0\)

\(x=3\)

Vậy \(x=3\)

=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1

=(2^4-1)(2^4+1)(2^8+1)(2^16+1)+1

=(2^8-1)(2^8+1)(2^16+1)+1

=(2^16-1)(2^16+1)+1

=2^32-1+1

=2^32

12 tháng 7 2023

\(3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{16}+1\right)+1\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{16}+1\right)+1\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)+1\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)+1\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)+1\)

\(=\left(2^{32}-1\right)+1\)

\(=2^{32}\)