chứng tỏ rằng:-(-a+b+c)+(b+c-1)=(b-c+6)-7-a+b)+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A+B=a+b-5+(-b-c+1)=a+b-5-b-c+1=a-c-4 (1)
C-D=b-c-4-(b-a)=b-c-4-b+a=a-c-4 (2)
từ (1) và (2) suy ra A+B=C-D
bài 1:vì:số dư 2 trừ số dư 2 = số dư 0,0 ko có giá trị
bài 2:vì:số dư 1 cộng số dư 3 cộng số dư 5 = số dư 9,9 chia hết cho 9
bài 3:có lẽ là lỗi đề chứ mình chịu
bài 4:vì:số dư 4 trừ số dư 3 -số dư 1= số dư 0,0ko có giá trị
học tốt bạn nhé
Lời giải:
a, Ta có: \(A=\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+...+\frac{1}{22}>\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=\frac{1}{22}.11=\frac{11}{22}=\frac{1}{2}\)
Vậy: \(A>\frac{1}{2}\)
b, Ta có: \(B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{99}+\frac{1}{100}\)
\(=\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Mà: \(\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\text{}\text{}\text{}>\left(\frac{1}{50}+...+\frac{1}{50}+\frac{1}{50}\right)+\left(\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\right)\)
=> \(B\text{}\text{}\text{}>\frac{1}{50}.41+\frac{1}{100}.50=\frac{41+25}{50}=\frac{33}{25}>1\)
Vậy: \(B>1\)
c, Ta có: \(C=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{16}+\frac{1}{17}< \frac{1}{5}+\frac{1}{6}+\left(\frac{1}{7}+...+\frac{1}{7}+\frac{1}{7}\right)=\frac{11}{30}+11.\frac{1}{7}=\frac{407}{210}< \frac{420}{210}=2\)
Vậy: \(C< 2\)
Chúc bạn học tốt!Tick cho mình nhé!
ta có \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)(1)
thêm ab vào hai vế của (1) : ad+ab<bc+ab
a(b+d)<b(a+c) \(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(2\right)\)
thêm cd vào vế của (1) : ad+cd<bc+cd
d(a+c)<c(b+d)\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(3\right)\)
từ (2) và (3) ta có :\(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
chúc pn học tốt
\(-\left(-a+b+c\right)+\left(b+c-1\right)=\left(b-c+6\right)-\left(7-a+b\right)+c\)
Ta có:
\(-\left(-a+b+c\right)+\left(b+c-1\right)\)
\(=a-b-c+b+c-1\)
\(=a-\left(b-b\right)-\left(c-c\right)-1\)
\(=a-0-0-1\)
\(=a-1\) (1).
\(\left(b-c+6\right)-\left(7-a+b\right)+c\)
\(=b-c+6-7+a-b+c\)
\(=\left(b-b\right)-\left(c-c\right)+a+\left(6-7\right)\)
\(=0-0+a-1\)
\(=a-1\) (2).
Từ (1) và (2) \(\Rightarrow-\left(-a+b+c\right)+\left(b+c-1\right)=\left(b-c+6\right)-\left(7-a+b\right)+c\left(đpcm\right).\)
Chúc bạn học tốt!
Trường học Toán Pitago – Hướng dẫn Giải toán – Hỏi toán - Học toán lớp 3,4,5,6,7,8,9 - Học toán trên mạng - Học toán online
Câu trả lời nằm ở đó !
Ta có: ‐﴾‐a+b+c﴿+﴾b+c‐1﴿
=a‐b‐c+b+c‐1
=﴾b‐b﴿+﴾c‐c﴿+a‐1
=0+0+a‐1
=a‐1
﴾b‐c+6﴿‐﴾7‐a+b﴿+c
=b‐c+6‐7+a‐b+c =
﴾b‐b﴿+﴾c‐c﴿+a+[﴾‐7﴿+6]
=0+0+a‐1
=a‐1
Vì a‐1=a‐1
=>‐﴾‐a+b+c﴿+﴾b+c‐1﴿=﴾b‐c+6﴿‐﴾7‐a+b﴿‐c