K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2022

a)(1/4)^5.4^5

= 1/1024 . 1024

= 1 

b, 

b)A=4^5.9^4-2.6^9/2^10.3^8+6^8.20 ????

ko hiểu, đây là sao 

5 tháng 2 2023

\(A=\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
\(=\dfrac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}\)
\(=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)
\(=\dfrac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}\)
\(=-\dfrac{2}{6}=-\dfrac{1}{3}\)

5 tháng 2 2023

\(=\dfrac{\left(2^2\right)^5.\left(3^2\right)^4-2.3^9.2^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}=\dfrac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)

5 tháng 7 2017

tự làm cho giỏi

24 tháng 7 2016

\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.2^2.5}\)

                            \(=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}\)

                              \(=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)

                                \(=\frac{2^{10}.3^8.\left(1-3\right)}{2^{10}.3^8.\left(1+5\right)}\)

                                 \(=\frac{-2}{6}=\frac{-1}{3}\)

22 tháng 7 2016

a)

\(5A=5+5^2+.....+5^{101}\)

\(\Rightarrow5A-A=\left(5+5^2+.....+5^{101}\right)-\left(1+5+.....+5^{100}\right)\)

\(\Rightarrow4A=5^{101}-1\)

\(\Rightarrow A=\frac{5^{101}-1}{4}\)

b)

\(2B=1+\left(\frac{1}{2}\right)^2+....+\left(\frac{1}{2}\right)^{100}\)

\(\Rightarrow2B-B=\left(1+\frac{1}{2^2}+.....+\frac{1}{2^{100}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{99}}\right)\)

\(\Rightarrow B=1-\frac{1}{2^{100}}\)

 

Đề bài yêu cầu gì?

22 tháng 7 2023

a) \(\dfrac{27^3\cdot11+9^5\cdot5}{3^9\cdot2^4}\)

\(=\dfrac{3^9\cdot11+3^{10}\cdot5}{3^9\cdot2^4}\)

\(=\dfrac{3^9\cdot\left(11+3\cdot5\right)}{3^9\cdot2^4}\)

\(=\dfrac{11+15}{16}\)

\(=\dfrac{26}{16}\)

\(=\dfrac{13}{8}\)

b) \(\dfrac{5^8+2^2\cdot25^4+2^3\cdot125^3-15^4\cdot5^4}{4^2\cdot625^2}\)

\(=\dfrac{5^8+2^2\cdot5^8+2^3\cdot5^9-3^4\cdot5^4\cdot5^4}{2^4\cdot5^8}\)

\(=\dfrac{5^8\cdot\left(1+2^2+2^3\cdot5-3^4\right)}{5^8\cdot2^4}\)

\(=\dfrac{1+4+40-81}{16}\)

\(=\dfrac{-36}{16}\)

\(=\dfrac{-9}{4}\)

c) \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)

\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)

\(=\dfrac{2^{10}\cdot3^8\cdot\left(1-3\right)}{2^{10}\cdot3^8\cdot\left(1+5\right)}\)

\(=\dfrac{-2}{6}\)

\(=-\dfrac{1}{3}\)

30 tháng 6 2015

\(A=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\frac{2^{10}.3^8-2^{10}.3^8.3}{2^{10}.3^8+2^{10}.3^8.5}\)

                                   \(=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8.\left(1+5\right)}=-\frac{2}{6}=-\frac{1}{3}\)

\(B=\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{11}.2.3^{10}.\left(1+5\right)}{2^{11}.3^{10}.3.\left(6-1\right)}=\frac{12}{15}=\frac{4}{5}\)

30 tháng 6 2015

\(A=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{2^{10}.3^8-2^2.3^9}{2^{10}.3^8-\left(-\left(2^2.3^8.5\right)\right)}=\frac{2^2.3^9}{-\left(2^2.3^8.5\right)}=-\frac{3}{5}\)

Ta có

\(E=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\cdot\frac{5^4.20^4}{25^5.4^5}\)

\(=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\cdot\frac{2^8.5^8}{5^{10}.2^{10}}\)

\(=\frac{2^{10}.3^8.\left(1-3\right)}{2^{10}.3^8.\left(1+5\right)}\cdot\frac{1}{5^2.2^2}\)

\(=\frac{\left(-2\right)}{6}\cdot\frac{1}{100}=-\frac{1}{3}\cdot\frac{1}{100}=-\frac{1}{300}\)

Vậy : \(E=-\frac{1}{300}\)

2 tháng 4 2020

Bài làm

\(E=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}.\frac{5^4.20^4}{25^5.4^5}\)

\(\Rightarrow E=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}.\frac{5^4.4^4.5^4}{5^{10}.4^5}\)

\(\Rightarrow E=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}.\frac{5^8.4^4}{5^{10}.4^5}\)

\(\Rightarrow E=\frac{2^{10}\left(3^8-3^9\right)}{2^{10}\left(3^8+3^8.5\right)}.\frac{1}{5^2.4}\)

\(\Rightarrow E=\frac{3^8-3^9}{3^8\left(1+5\right)}.\frac{1}{100}\)

\(\Rightarrow E=\frac{3^8\left(1-3\right)}{3^8\left(1+5\right)}.\frac{1}{100}\)

\(\Rightarrow E=-\frac{2}{6}.\frac{1}{100}\)

\(\Rightarrow E=-\frac{1}{300}\)

\(A=\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)

\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+3^8\cdot2^{10}\cdot5}\)

\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\cdot\left(1+5\right)}\)

\(=-\dfrac{2}{6}=-\dfrac{1}{3}\)