K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2016

Bài 1

a) \(P=\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\)    (ĐK : x\(\ge0\) ; x\(\ne\) 1)

        \(=\frac{3a+\sqrt{9a}-3}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\)

         \(=\frac{3a+\sqrt{9a}-3-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{3a+\sqrt{9a}-3-a+1-a+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)

b) \(P=\frac{\sqrt{a}+1}{\sqrt{a}-1}=\frac{\sqrt{a}-1+2}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)

Vậy để P là số nguyên thì: \(\sqrt{a}-1\inƯ\left(2\right)\)

Mà Ư(2)={-1;1;2;-1}

=> \(\sqrt{a}-1\in\left\{1;-1;2;-2\right\}\)

Ta có bảng sau:

\(\sqrt{a}-1\)1-12-2
a409\(\sqrt{a}=-1\) (ktm)

vậy a={0;4;9} thì P nguyên

23 tháng 7 2016

Bài 2

  \(P=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)(ĐK:a\(\ge\)8)

      \(=\frac{\sqrt{\left(a-4\right)+4\sqrt{a-4}+4}+\sqrt{\left(a-4\right)-4\sqrt{a-4}+4}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)

     \(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{1-\frac{4}{a}}\)

      \(=\sqrt{a-4}+2+\sqrt{a-4}-2:\frac{a-4}{a}\)

     \(=2\sqrt{a-4}\cdot\frac{a}{a-4}\)

     \(=\frac{2a}{\sqrt{a-4}}\)

14 tháng 6 2015

ĐK để phân thức XĐ : x khác 1 và x> 0

 Đặt \(B=\left(\frac{\left(\sqrt{x}+2\right)\left(x-1\right)-\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+1\right)}{\left(x+2\sqrt{x}+1\right)\left(x-1\right)}\right)\) ( Đây là mình vừa đặt vừa làm mẫu thức chung nhe)

  => \(B=\left(\frac{x\sqrt{x}-\sqrt{x}+2x-2-x\sqrt{x}-2x-\sqrt{x}+2x+4\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}\right)\)

=>\(B=\frac{2\sqrt{x}+2x}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}=\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\)

A = \(B:\frac{\sqrt{x}}{\sqrt{x+1}}=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{2}{x-1}\)

B, Bạn tự làm ý B nhe

HD để A nguyên => x - 1 thuộc ước của 2 mà 2 có các ước là +-1 và +-2

(+) với x-1 = 2 => x = 3

............................

25 tháng 10 2015

Ta có \(\left(\sqrt{a}+2\right)\left(1-\sqrt{a}\right)=a+\sqrt{a}-2\)

\(=\frac{3\text{a}+3\sqrt{a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\)

\(=\frac{3\text{a}+3\sqrt{a}-3-a+1+a-4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{3\text{a}+3\sqrt{a}-6}{a+\sqrt{a}-2}\)

\(=\frac{3\left(a+\sqrt{a}-2\right)}{a+\sqrt{a}-2}\)

\(=3\)

b/ Ta có 3 là số nguyên nên biểu thức P luôn nguyên với mọi x

TICK CHO MÌNH NHA

 

20 tháng 6 2016

ĐKXĐ: \(\hept{\begin{cases}y>0\\y\ne1\end{cases}}\)

a/ Ta có: \(A=\left[\frac{\sqrt{y}^3-1}{\sqrt{y}\left(\sqrt{y}-1\right)}-\frac{\sqrt{y}^3+1}{\sqrt{y}\left(\sqrt{y}+1\right)}\right]:\frac{2\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}+1\right)\left(\sqrt{y}-1\right)}\)

    \(=\left[\frac{\left(\sqrt{y}-1\right)\left(y+\sqrt{y}+1\right)}{\sqrt{y}\left(\sqrt{y}-1\right)}-\frac{\left(\sqrt{y}+1\right)\left(y-\sqrt{y}+1\right)}{\sqrt{y}\left(\sqrt{y}+1\right)}\right].\frac{\sqrt{y}+1}{2\left(\sqrt{y}-1\right)}\)

    \(=\left(\frac{y+\sqrt{y}+1-y+\sqrt{y}-1}{\sqrt{y}}\right).\frac{\sqrt{y}+1}{2\left(\sqrt{y}-1\right)}\)

       \(=\frac{2\sqrt{y}}{\sqrt{y}}.\frac{\sqrt{y}+1}{2\left(\sqrt{y}-1\right)}=\frac{\sqrt{y}+1}{\sqrt{y}-1}\)

b/ \(A=\frac{\sqrt{y}+1}{\sqrt{y}-1}=1+\frac{2}{\sqrt{y}-1}\)

    Để \(A\in Z\Rightarrow\left(\sqrt{y}-1\right)\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

   Với \(\sqrt{y}-1=1\Rightarrow\sqrt{y}=2\Rightarrow y=4\)

   Với \(\sqrt{y}-1=-1\Rightarrow\sqrt{y}=0\Rightarrow y=0\)(loại)

   Với \(\sqrt{y}-1=2\Rightarrow\sqrt{y}=3\Rightarrow y=9\)

  Với \(\sqrt{y}-1=-2\Rightarrow\sqrt{y}=-1\) (loại)

      Vậy y = 4 , y = 9

12 tháng 8 2021

a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)

\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)

\(A=\frac{4}{\sqrt{x}+2}\)

b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)

=> 2cawn x + 4 = 12

=> 2.căn x = 8

=> căn x = 4

=> x = 16 (thỏa mãn)

c, có A = 4/ căn x + 2 và B  = 1/căn x - 2

=> A.B = 4/x - 4 

mà AB nguyên

=> 4 ⋮ x - 4

=> x - 4 thuộc Ư(4) 

=> x - 4 thuộc {-1;1;-2;2;-4;4}

=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4

=> x thuộc {3;5;2;6;8}

d, giống c thôi

5 tháng 11 2017

\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{x-3\sqrt{x}+2}\)

\(A=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{x-4\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{2x-5\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{1}{\sqrt{x}-2}\)

vậy \(A=\frac{1}{\sqrt{x}-2}\)

A có nghĩa khi \(\sqrt{x}-2>0\)

                    \(\Leftrightarrow\sqrt{x}=2\)

                      \(\Leftrightarrow x=4\)

vậy \(x=4\) thì A có nghĩa

b) theo ý a) \(A=\frac{1}{\sqrt{x}-2}\)

theo bài ra \(A>2\) \(\Leftrightarrow\frac{1}{\sqrt{x}-2}>2\)

                                     \(\Leftrightarrow\frac{1}{\sqrt{x}-2}-2>0\)

                                      \(\Leftrightarrow\frac{1}{\sqrt{x}-2}-\frac{2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)

                                      \(\Leftrightarrow\frac{1-2\sqrt{x}+4}{\sqrt{x}-2}>0\)

                                      \(\Leftrightarrow\frac{5-2\sqrt{x}}{\sqrt{x}-2}>0\)

\(\Rightarrow\hept{\begin{cases}5-2\sqrt{x}>0\\\sqrt{x}-2>0\end{cases}}\)  hoặc \(\hept{\begin{cases}5-2\sqrt{x}< 0\\\sqrt{x}-2< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}-2\sqrt{x}>-5\\\sqrt{x}>2\end{cases}}\) hoặc \(\hept{\begin{cases}-2\sqrt{x}< -5\\\sqrt{x}< 2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x< \frac{25}{4}\\x>4\end{cases}}\)hoặc \(\hept{\begin{cases}x>\frac{25}{4}\\x< 4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}4< x< \frac{25}{4}\\x\notin\varnothing\end{cases}}\)

vậy \(4< x< \frac{25}{4}\) thì \(A>2\)

5 tháng 11 2017

mình sửa lại chút chỗ dòng thứ 2 từ dưới lên

\(\Rightarrow\orbr{\begin{cases}4< x< \frac{25}{4}\\x\in\varnothing\end{cases}}\)

mải quá nên mình ấn mhầm cho mk xin lỗi