K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc BFC=góc BEC=1/2*180=90 độ

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

=>H là trực tâm

=>AH vuông góc BC

góc AFH+góc AEH=180 độ

=>AEHF là tứ giác nội tiếp

b: Xét ΔAFH vuông tại F và ΔADB vuông tại D có

góc FAH chung

=>ΔAFH đồng dạng với ΔADB

=>AF/AD=AH/AB

=>AF*AB=AD*AH

2 tháng 2 2021

Nguyễn Lê Phước Thịnh

Akai Haruma Giáo viên

giúp em với ak, ai biết giúp với

2 tháng 2 2021

DE đâu ra thế bạn :)) 

a) Xét (O) có 

ΔDBC nội tiếp đường tròn(D,B,C∈(O))

BC là đường kính(gt)

Do đó: ΔDBC vuông tại D(Định lí)

⇒CD⊥BD tại D

⇒CD⊥AB tại D

⇒HD⊥AD tại D

Xét ΔADH có HD⊥AD tại D(cmt)

nên ΔADH vuông tại D(Định nghĩa tam giác vuông)

Ta có: ΔADH vuông tại D(cmt)

mà DI là đường trung tuyến ứng với cạnh huyền AH(I là trung điểm của AH)

nên \(DI=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Xét (O) có

ΔBEC nội tiếp đường tròn(B,E,C∈(O))

BC là đường kính(gt)

Do đó: ΔBEC vuông tại E(Định lí)

⇒BE⊥CE tại E

⇒BE⊥AC tại E

⇒HE⊥AE tại E

Xét ΔAEH có AE⊥EH tại E(cmt)

nên ΔAEH vuông tại E(Định nghĩa tam giác vuông)

Ta có: ΔAEH vuông tại E(cmt)

mà EI là đường trung tuyến ứng với cạnh huyền AH(I là trung điểm của AH)

nên \(EI=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Từ (1) và (2) suy ra ID=IE

hay I nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: OD=OE(=R)

nên O nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy ra OI là đường trung trực của DE

hay OI⊥DE(đpcm)

I là điểm nào ạ?


vì Đường tròn (O;R) có đường kính BC cắt AB, AC lần lượt là F và E => góc HEA = góc HFA = 90o
mà hai góc này là hai góc đối nhau=> tứ giác AFHE nội tiếp

21 tháng 3 2018

Từng bài 1 thôi bạn!

A B C J O N K H M

vẽ trên đt thông cảm!

Do đường tròn ngoại tiếp tam giác ABC có tâm là O

Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)

Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\)

Mà AK là phân giác của \(\widehat{BAC}\)

=> AK là phân giác 

\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)

Theo bổ đề trên ta có tứ giác ANMO là hình bình hành

=> HK//AO

=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)

Hay tam giác NAK cân tại N mà N là trung điểm AH

=> AN=NH=NK

=> \(\Delta AHK\)vuông tại K