GPT:
1) \(\frac{36}{x-12}\)+\(\frac{36}{x}\) =\(\frac{9}{2}\)
2)\(\frac{54}{x+6}+\frac{54}{x-6}=\frac{27}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài lạ thế!
\(A=-\frac{8}{5}x^3+\frac{36}{5}x^2y-\frac{54}{5}xy^2+\frac{27}{5}y^3\)
\(=-\frac{1}{5}\left(8x^3-36x^2y+54xy^2-27y^3\right)\)
=\(-\frac{1}{5}\left(\left(2x\right)^3-3.\left(2x\right)^2.3y+3.2x.\left(3y\right)^2-\left(3y\right)^3\right)\)
\(=-\frac{1}{5}\left(2x-3y\right)^3=-\frac{1}{5}.4^3=-\frac{64}{5}\)
1/4 . 2/6 . 3/8 . ... .30/62 .31/64 = 2^x
(1/2 . 1/2).(2/3 . 1/2).(3/4 . 1/2). ... .(30/31 . 1/2).(31/32 . 1/2) = 2^x
(1/2.1/2. ... .1/2).(1/2 . 2/3 . 3/4. ... .30/31 . 31/32) = 2^x
(31 số 1/2)
(1/2)^31. = 2^x
=> 0=x+36
x=0-36
x=-36
Vậy x=-36
Theo mk nghĩ,mk làm đúng nha .Tk cho mk
Để mk sửa phần này một chút
\((\frac{1}{2})^{31}\cdot\frac{1\cdot2\cdot3.....30\cdot31}{2\cdot3\cdot4.....31\cdot32}=2^x\)
\(\frac{1^{31}}{2^{31}}\cdot\frac{1}{32}=2^x\)
\(\frac{1}{2^{31}}\cdot\frac{1}{2^5}=2^x\)
\(\frac{1}{2^{36}}=2^x\)
\(1=2^x\cdot2^{36}\)
\(2^0=2^x+36\)
Rồi bn tự suy luận nha
g) \(\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{1}{3}\end{cases}}\)
Vây \(x\in\left\{\frac{-1}{2};\frac{1}{3}\right\}\)
a)\(\left(-3\right)^{x+3}=-\frac{1}{27}\)
\(\left(-3\right)^{x+3}=\left(-\frac{1}{3}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-\frac{3^0}{3^1}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-3^{-1}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-3\right)^{-3}\)
\(\Rightarrow x+3=-3\)
\(\Rightarrow x=-6\)
b)\(\left(-6\right)^{2x+2}=\frac{1}{36}\)
\(\left(-6\right)^{2x+2}=\left(-\frac{1}{6}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-\frac{6^0}{6^1}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-6^{-1}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-6\right)^{-2}\)
\(\Rightarrow2x+2=-2\)
\(\Rightarrow2x=-4\)
\(\Rightarrow x=-2\)
c)\(\left(-3\right)^{x+5}=\frac{1}{81}\)
\(\left(-3\right)^{x+5}=\left(-\frac{1}{3}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-\frac{3^0}{3^1}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-3^{-1}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-3\right)^{-4}\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
d)\(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^6\)
\(\left[\left(\frac{1}{3}\right)^2\right]^x=\left[\left(\frac{1}{3}\right)^3\right]^6\)
\(\left(\frac{1}{3}\right)^{2x}=\left(\frac{1}{3}\right)^{18}\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
e)\(\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)
\(\left[\left(\frac{2}{3}\right)^2\right]^x=\left[\left(\frac{2}{3}\right)^3\right]^6\)
\(\left(\frac{2}{3}\right)^{2x}=\left(\frac{2}{3}\right)^{18}\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
a,\(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}=\frac{x+1}{8}+\frac{x+1}{9}\) (1)
<=> \(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}-\frac{x+1}{8}-\frac{x+1}{9}=0\)
<=> \(\left(x+1\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\right)=0\)
=> x+1=0 (vì \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\ne0\))
<=> x=-1
Vậy pt (1) có tập nghiệm S\(=\left\{-1\right\}\)
b, \(\frac{x+6}{2015}+\frac{x+5}{2016}+\frac{x+4}{2017}=\frac{x+3}{2018}+\frac{x+2}{2019}+\frac{x+1}{2010}\)(2)
<=> \(\frac{x+6}{2015}+1+\frac{x+5}{2016}+1+\frac{x+4}{2017}+1=\frac{x+3}{2018}+1+\frac{x+2}{2019}+1+\frac{x+1}{2020}+1\)
<=> \(\frac{x+2021}{2015}+\frac{x+2021}{2016}+\frac{x+2021}{2017}-\frac{x+2021}{2018}-\frac{x+2021}{2019}-\frac{x+2021}{2020}=0\)
<=> \(\left(x+2021\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
=> x+2021=0(vì \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))
<=> x=-2021
Vậy pt (2) có tập nghiệm S=\(\left\{-2021\right\}\)
c,\(\frac{x+6}{2016}+\frac{x+7}{2017}+\frac{x+8}{2018}=\frac{x+9}{2019}+\frac{x+10}{2020}+1\) (3)
<=> \(\frac{x+6}{2016}-1+\frac{x+7}{2017}-1+\frac{x+8}{2018}-1=\frac{x+9}{2019}-1+\frac{x+10}{2020}-1+1-1\)
<=> \(\frac{x-2010}{2016}+\frac{x-2010}{2017}+\frac{x-2010}{2018}=\frac{x-2010}{2019}+\frac{x-2010}{2020}\)
<=> \(\frac{x-2010}{2016}+\frac{x-2010}{2017}+\frac{x-2010}{2018}-\frac{x-2010}{2019}-\frac{x-2010}{2020}=0\)
<=> \(\left(x-2010\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
=> x-2010=0 (vì \(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))
<=> x=2010
Vậy pt (3) có tập nghiệm S=\(\left\{2010\right\}\)
d, \(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\) (4)
<=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=15-1-2-3-4-5\)
<=> \(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
<=> (x-100)(\(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\))=0
=> x -100=0(vì \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\))
<=> x=100
Vậy pt (4) có tập nghiệm S=\(\left\{100\right\}\)
a) \(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}=\frac{x+1}{8}+\frac{x+1}{9}\)
\(\Leftrightarrow\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}-\frac{x+1}{8}-\frac{x+1}{9}=0\)
\(\Leftrightarrow\left(x+1\right).\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=0-1\)
\(\Rightarrow x=-1\)
Vậy \(x=-1.\)
Mình chỉ làm câu a) thôi nhé.
Chúc bạn học tốt!
\(\)\(a)\frac{1}{{4{\rm{x}}{y^2}}}\)và \(\frac{5}{{6{{\rm{x}}^2}y}}\)
Ta có: MTC là : \(12{{\rm{x}}^2}{y^2}\).
Nhân tử phụ của phân thức \(\frac{1}{{4{\rm{x}}{y^2}}}\)là 3x
Nhân tử phụ của phân thức \(\frac{5}{{6{{\rm{x}}^2}y}}\)là 2y
Khi đó: \(\frac{1}{{4{\rm{x}}{y^2}}} = \frac{{1.3{\rm{x}}}}{{4{\rm{x}}{y^2}.3{\rm{x}}}} = \frac{{3{\rm{x}}}}{{12{{\rm{x}}^2}{y^2}}}\)
\(\frac{5}{{6{{\rm{x}}^2}y}} = \frac{{5.2y}}{{6{{\rm{x}}^2}y.2y}} = \frac{{10y}}{{12{{\rm{x}}^2}{y^2}}}\)
\(b)\frac{9}{{4{{\rm{x}}^2} - 36}}\)và \(\frac{1}{{{x^2} + 6{\rm{x}} + 9}}\).
Ta có: \(\begin{array}{l}4{{\rm{x}}^2} - 36 = 4({x^2} - 9) = 4(x - 3)(x + 3)\\{x^2} + 6{\rm{x}} + 9 = {(x + 3)^2}\end{array}\)
MTC là: \(4(x - 3){(x + 3)^2}\)
Nhân tử phụ của phân thức \(\frac{9}{{4{{\rm{x}}^2} - 36}}\)là: x + 3
Nhân tử phụ của phân thức \(\frac{1}{{{x^2} + 6{\rm{x}} + 9}}\)là 4(x – 3)
Khi đó: \(\begin{array}{l}\frac{9}{{4{{\rm{x}}^2} - 36}} = \frac{9}{{4({x^2} - 9)}} = \frac{9}{{4(x - 3)(x + 3)}} = \frac{{9(x + 3)}}{{4(x - 3){{(x + 3)}^2}}}\\\frac{1}{{{x^2} + 6{\rm{x}} + 9}} = \frac{1}{{{{(x + 3)}^2}}} = \frac{{4(x - 3)}}{{4(x - 3){{(x + 3)}^2}}}\end{array}\)
a) \(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)
\(\Leftrightarrow\left(\frac{x+1}{94}+1\right)+\left(\frac{x+2}{93}+1\right)+\left(\frac{x+3}{92}+1\right)=\left(\frac{x+4}{91}+1\right)+\left(\frac{x+5}{90}+1\right)+\left(\frac{x+6}{89}+1\right)\)
\(\Leftrightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}-\frac{x+95}{91}-\frac{x+95}{90}-\frac{x+95}{89}=0\)
\(\Leftrightarrow\) \(\left(x+95\right)\left(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\right)=0\)
Vì \(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\ne0\)
\(\Rightarrow x+95=0\)
\(\Leftrightarrow x=-95\)
Vậy phương trình có một nghiệm x = -95
b) \(\frac{x-1}{59}+\frac{x-2}{58}+\frac{x-3}{57}=\frac{x-4}{56}+\frac{x-5}{55}+\frac{x-6}{54}\)
\(\Leftrightarrow\left(\frac{x-1}{59}-1\right)+\left(\frac{x-2}{58}-1\right)+\left(\frac{x-3}{57}-1\right)=\left(\frac{x-4}{56}-1\right)+\left(\frac{x-5}{55}-1\right)+\left(\frac{x-6}{54}-1\right)\)
\(\Leftrightarrow\frac{x-60}{59}+\frac{x-60}{58}+\frac{x-60}{57}-\frac{x-60}{56}-\frac{x-60}{55}-\frac{x-60}{54}=0\)
\(\Leftrightarrow\left(x-60\right)\left(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\right)=0\)
Vì \(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\ne0\)
\(\Rightarrow x-60=0\)
\(\Leftrightarrow x=60\)
Vậy phương trình có một nghiệm x = 60
a) \(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)
\(\Rightarrow\left(\frac{x+1}{94}+1\right)+\left(\frac{x+2}{93}+1\right)+\left(\frac{x+3}{92}+1\right)=\left(\frac{x+4}{91}+1\right)+\left(\frac{x+5}{90}+1\right)+\left(\frac{x+6}{89}+1\right)\)
\(\Rightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}=\frac{x+95}{91}+\frac{x+95}{90}+\frac{x+95}{89}\)
\(\Rightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}-\frac{x+95}{91}-\frac{x+95}{90}-\frac{x+95}{89}=0\)
\(\Rightarrow\left(x+95\right)\left(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\right)=0\)
Mà \(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\ne0\)
\(\Rightarrow x+95=0\)
\(\Rightarrow x=-95\)
Vậy x = -95
b) \(\frac{x-1}{59}+\frac{x-2}{58}+\frac{x-3}{57}=\frac{x-4}{56}+\frac{x-5}{55}+\frac{x-6}{54}\)
\(\Rightarrow\left(\frac{x-1}{59}-1\right)+\left(\frac{x-2}{58}-1\right)+\left(\frac{x-3}{57}-1\right)=\left(\frac{x-4}{56}-1\right)+\left(\frac{x-5}{55}-1\right)+\left(\frac{x-6}{54}-1\right)\)
\(\Rightarrow\frac{x-60}{59}+\frac{x-60}{58}+\frac{x-60}{57}-\frac{x-60}{56}-\frac{x-5}{55}-\frac{x-6}{54}=0\)
\(\Rightarrow\left(x-60\right)\left(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\right)=0\)
Mà \(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\ne0\)
\(\Rightarrow x-60=0\)
\(\Rightarrow x=60\)
Vậy x = 60