Hình chữ nhật ABCD có AC và BD cắt nhau tại O. Nếu BA = BC thì số đo của góc COD là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
AB//CD
=>góc OAB=góc OCD
mà góc OAB=góc ODC
nên góc ODC=góc OCD
=>OC=OD
=>AC=BD
Xét hình bình hành ABCD có AC=BD
nên ABCD là hình chữ nhật
a) Các cạnh đối diện của hình chữ nhật bằng nhau (AB = CD = 4,5 cm, BC = AD = 2,5 cm).
Các góc của hình chữ nhật đều bằng nhau và bằng \( 90^0\)
b) AB và CD song song với nhau.
AD và BC song song với nhau.
c) AC và BD bằng nhau (cùng bằng 5,1 cm).
a) \(SO \bot \left( {ABCD} \right) \Rightarrow \left( {SA,\left( {ABCD} \right)} \right) = \left( {SA,OA} \right) = \widehat {SAO}\)
Tam giác \(SAC\) là tam giác đều \( \Rightarrow \widehat {SAO} = {60^ \circ }\)
\( \Rightarrow \left( {SA,\left( {ABCD} \right)} \right) = {60^ \circ }\)
b) \(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AC \bot B{\rm{D}}\)
\(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot AC\)
\( \Rightarrow AC \bot \left( {SB{\rm{D}}} \right)\)
\( \Rightarrow \left( {SA,\left( {SB{\rm{D}}} \right)} \right) = \left( {SA,SO} \right) = \widehat {ASO} = \frac{1}{2}\widehat {ASC} = {30^ \circ }\)
c) \(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot MO,SO \bot DO\)
Vậy \(\widehat {MO{\rm{D}}}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {M,SO,D} \right]\)
\(ABCD\) là hình vuông \(\widehat {AOD} = {90^ \circ }\)
\(\Delta AMO\) vuông cân tại \(M \Rightarrow \widehat {AOM} = {45^ \circ }\)
\( \Rightarrow \widehat {MO{\rm{D}}} = \widehat {AOM} + \widehat {AO{\rm{D}}} = {45^ \circ } + {90^ \circ } = {135^ \circ }\)
Vậy số đo của góc nhị diện \(\left[ {M,SO,D} \right]\) bằng \({135^ \circ }\).
A B C D O
Ta có:
ABCD là hình thoi nên AB = BC = CD = DA ( = CA = 4 cm)
Do đó: tam giác ABC là tam giác đều ( do AB = BC = CA ( = 4 cm))
Suy ra, góc B = 60o
Mà góc B và góc D là hai góc đối nhau nên theo tính chất hình thoi, góc D = 60o
------------------------------------
Theo tính chất hình thoi, 2 đường chéo vuông góc với nhau nên AC vuông góc với BD tại O
Tam giác đều ABC có OB là đường cao nên cũng là đường trung tuyến
Do đó: \(OA=OC=\frac{1}{2}.AC=\frac{1}{2}.4=2\) (cm)
Áp đụng định lý Py-ta-go vào tam giác OAB, ta được:
\(AB^2=OA^2+OB^2\)
\(\Rightarrow\) \(OB^2=AB^2-OA^2=4^2-2^2=16-4=12\)
\(\Rightarrow\) \(OB=\sqrt{12}\) (cm)
Góc COD có số đo là 900
Vì theo t/c của hình chữ nhật thì giao điểm của hai đường chéo cắt nhau tại TĐ của mỗi đường
Suy ra :OB=OD
Mà BA=OB=OD
Suy ra: Góc COD=600 vì tam giác ấy đều