K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2023

Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.

Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.

Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.

Vậy số tự nhiên n cần tìm là 3.

28 tháng 7 2023

Bài 1

...=((2n-2):2+1):2=756

(2(n-1):2+1)=756×2

n-1+1=1512

n=1512

9 tháng 4 2021

undefined

9 tháng 4 2021

`P=n^3-n^2+n-1`

`=n^2(n-1)+(n-1)`

`=(n-1)(n^2+1)`

Vì n là stn thì p là snt khi

`n-1=1=>n=2`

Vậy n=2

7 tháng 7 2021

A = \((2n)^{3} - 3n + 1 \)

\(\Leftrightarrow\) A = \((2n)^{3} - 2n - n + 1\)

\(\Leftrightarrow\) A = \(2n (n^{2} - 1) - ( n-1)\)

\(\Leftrightarrow\) A = \(2n(n - 1)(n+1)-(n-1)\)

\(\Leftrightarrow\) A = \((2n^{2} +2n-1)(n-1)\)

Vì A là số nguyên tố nên n - 1 = 1

\(\Rightarrow\) n = 2

 

giúp e vs .e đang cần gấp

14 tháng 11 2023

giúp mik với

 

14 tháng 11 2023

nnhé

 

26 tháng 3 2017

Để \(\left(n-1\right)\left(n^2+2n+3\right)\) là số nguyên tố <=> \(n-1=1\) hoặc \(n^2+2n+3=1\)

TH1 : \(n-1=1\Rightarrow n=2\)

\(\Rightarrow\left(n-1\right)\left(n^2+2n+3\right)=\left(2-1\right)\left(2^2+2.2+3\right)=11\)là số nguyên tố (TM)

TH2 : \(n^2+2n+3=1\)

\(\Leftrightarrow\left(n^2+2n+1\right)+2=1\Leftrightarrow\left(n+1\right)^2+2=1\Rightarrow\left(n+1\right)^2=-1\) (loại vì \(\left(n+1\right)^2\ge0\) )

Vậy n = 2 thì \(\left(n-1\right)\left(n^2+2n+3\right)\)là số nguyên tố 

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Lời giải:
Từ đề bài, kết hợp với $2n+1> n-1$ ta có các TH sau đây:

TH1: 

$2n+1=3; n-1=p$

$\Rightarrow n=1; n-1=p\Rightarrow p=0$ (vô lý)

TH2: $2n+1=p, n-1=3\Rightarrow p=9$ (loại)

TH3: $2n+1=3p; n-1=1$

$\Rightarrow 3p=5$ (loại)

Vậy không tồn tại $n,p$ thỏa đề.