Cho tam giác ABC có AC = AC. Lấy điểm D trên đoạn thẳng AB ,lấy điểm E trên đoạn thẳng AC sao cho AD = AE. O là giao điểm của DC và EB. Chứng minh : tam giác BOD = tam gác COE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét 2 tam giác BDE và CED có
BD=EC
DE chung
Góc BDE = góc DEC do chúng lần lượt bù với 2 góc bằng nhau là ADE và AED
=> dpcm (c.g.c)
b/ Có góc DKB bằng góc EKC do đối đỉnh
KD=KE
góc BDK=góc CEK
Vậy tam giác BOD = tam giác COE
a/ Xét tam giác ABE và tam giác ACD có :
AD = AE , góc A là góc chung của hai tam giác , AB = AC
=> tam giác ABE = tam giác ACD => CD = BE
b/ Dễ dàng chứng minh đc tam giác BED = tam giác CDE (c.c.c)
=> góc CED = góc CDE => tam giác ODE cân tại O => OD = OE (1)
Lại có BE = CD => OB = OC (2) ; góc BOD = góc EOC (đối đỉnh) (3)
Từ (1) , (2) , (3) suy ra tam giác BOD = tam giác OCE (c.g.c)
a) Xét tam giác ABE và tam giác ACD:
có+AB=AC(gt)
+A: góc chung
+AD=AE(gt)
Vậy tam giác ABE=tam giác ACD(c.g.c)
=> BE=CD( 2 cạnh tương ứng )
b)
nên: ABD=ACE( 2 góc tương ứng )
có:+ góc BOD=COE( đối đỉnh)
+AB=AC( tam giác ABC cân vì có 2 cạnh bên bằng nhau) mà AD=AE(gt)=>BD=CE
+góc ABE=ACD(cmt)
Vậy tam giác BOD=COE(g.c.g)
^...^ ^_^
a: Xét ΔAEB và ΔADC có
AE=AD
\(\widehat{DAC}\) chung
AB=AC
Do đó: ΔAEB=ΔADC
Suy ra: BE=CF
b: Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE
và AB=AC
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{ODB}=\widehat{OEC}\)
Xét ΔODB và ΔOEC có
\(\widehat{ODB}=\widehat{OEC}\)
BD=EC
\(\widehat{DBO}=\widehat{ECO}\)
Do đó: ΔODB=ΔOEC
a, xét tam giác ABE và tam giác ACD có:
AB=AC; góc A chung; AD=AE
nên tam giác ABE= tam giác ACD(c.g.c)
suy ra BE=CD
a) Xét ΔBEA∆BEA và ΔCDA∆CDA có:
BA=CABA=CA (gt)
ˆAA^ chung
AE=ADAE=AD (gt)
⇒ΔBEA=ΔCDA⇒∆BEA=∆CDA (c.g.c)
⇒BE=CD⇒BE=CD (hai cạnh tương
a) tam giác ABC có AB = AC (gt)
=> tam giác ABC cân tại A => góc B = góc C
lại có: D thuộc AB, E thuộc AC nên DB = AB - AD
EC = AC - AE
mà AB = AC, AD = AE => DB = EC
xét tam giác DBC và tam giác ECB có: DB = EC (cmt)
góc DBC = góc ECB (cmt)
BC: cạnh chung
=> tam giác DBC = tam giác ECB (cgc) => DC = BE (đpcm)
sai đề bài rồi