K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

a)  x : (-1/2)^3 = -1/2

=>x = (-1/2)^4 = 1/16

b) (x - 2)^2 = 1 

=> (x - 2)^2 = 1^2 = (-1)^2 (Do 1 = 1 ^2 = (-1)^2)

=> x - 2 = 1 hoặc x - 2 = -1

=> x = 3 hoặc x = 1

c) (2x -1 )^3 = 8

=>(2x-1)^3 = 2^3

=>2x-1 = 2

=>2x = 3

=>x=3/2

18 tháng 12 2016

\(a,x:\left(-\frac{1}{2}\right)^3=-\frac{1}{2}\)

                     \(x=\left(-\frac{1}{2}\right)\times\left(-\frac{1}{2}\right)^3\)

                     \(x=\left(-\frac{1}{2}\right)^4\)

                     \(x=\frac{1}{16}\)

\(b,\left(x-2\right)^2=1\)

\(\Rightarrow\left(x-2\right)^2=1^2\)

\(\Rightarrow x-2=1\)

\(\Rightarrow x=1+2\)

\(\Rightarrow x=3\)

\(c,\left(2x-1\right)^3=8\)

\(\Rightarrow\left(2x-1\right)^3=2^3\)

\(\Rightarrow2x-1=2\)

\(\Rightarrow2x=2+1\)

\(\Rightarrow2x=3\)

\(\Rightarrow x=\frac{3}{2}\)

30 tháng 8 2023

Giải pt à bạn

30 tháng 8 2023

Bài 1:

a) \(x\left(x+1\right)+x\left(x-1\right)-2x^2\)

\(=x^2+x+x^2-x-2x^2\)

\(=2x^2-2x^2\)

\(=0\)

b) \(\left(x+2\right)\left(x^2-x+1\right)-\left(x-2\right)\left(x^2+x+1\right)\)

\(=x^3-x^2+x+2x^2-2x+2-x^3-x^2-x+2x^2+2x+2\)

\(=\left(x^3-x^3\right)+\left(-x^2+2x^2-x^2+2x^2\right)+\left(x-2x-x+2x\right)+\left(2+2\right)\)

\(=2x^2+4\)

c) \(\left(3-x\right)^2+2\left(x-3\right)\left(x+7\right)+\left(x+7\right)^2\)

\(=\left(x-3\right)^2+2\left(x-3\right)\left(x+7\right)+\left(x+7\right)^2\)

\(=\left[\left(x-3\right)+\left(x+7\right)\right]^2\)

\(=\left(x-3+x+7\right)^2\)

\(=\left(2x+4\right)^2\)

29 tháng 6 2021

`a)A=x(x+y)-x(y-x)`

`=x^2+xy-xy+x^2`

`=2x^2`

Thay `x=-3`

`=>A=2.9=18`

`b)B=4x(2x+y)+2y(2x+y)-y(y+2x)`

`=8x^2+4xy+4xy+2y^2-y^2-2xy`

`=8x^2+y^2+6xy`

Thay `x=1/2,y=-3/4`

`=>B=8*1/4+9/16-9/4`

`=2+9/16-9/4`

`=9/16-1/4=5/16`

19 tháng 7 2021

a) (2x+3)2-2(2x+3)(2x+5)+(2x+5)2

=4x2+12x+9-(4x+6)(2x+5)+4x2+20x+25

=4x2+12x+9-(8x2+12x+20x+30)+4x2+20x+25

=4x2+12x+9-8x2-12x-20x-30+4x2+20x+25

=4

b) (x2+x+1)(x2-x+1)(x2-1)

=((x2+1)2-x2)(x2-1)

=(x4+x2+1)(x2-1)

=x6+x4+x2-x4-x2-1

=x6-1

c)(a+b-c)2+(a-b+c)2-2(b-c)2

=a2+b2+c2+2ab-2ac-2bc+a2+b2+c2-2ab+2ac-2bc-2(b2-2bc+c2)

=2a2+2b2+2c2-4bc-2b2+4bc-2c2

=2a2

d) (a+b+c)2+(a-b-c)2+(b-c-a)2+(c-a-b)2

= a2+b2+c2+2ab+2ac+2bc+a2+b2+c2-2ab-2ac+2bc+a2+b2+c2+2bc-2ab+2ac+a2+b2+c2-2ac-2bc+2ab

=4a2+4b2+4c2+4ab+4bc

 

 

19 tháng 7 2021

d) (a+b+c)2+(a-b-c)2+(b-c-a)2+(c-a-b)2

= a2+b2+c2+2ab+2ac+2bc+a2+b2+c2-2ab-2ac+2bc+a2+b2+c2-2bc-2ab+2ac+a2+b2+c2-2ac-2bc+2ab

=4a2+4b2+4c2

 

 

3 tháng 2 2021

a) \(\lim\limits_{x\rightarrow-2}\dfrac{2x^2+x-6}{x^3+8}=\lim\limits_{x\rightarrow-2}\dfrac{\left(2x-3\right)\left(x+2\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\\ =\lim\limits_{x\rightarrow-2}\dfrac{2x-3}{x^2-2x+4}=-\dfrac{7}{12}\).

b) \(\lim\limits_{x\rightarrow3}\dfrac{x^4-x^2-72}{x^2-2x-3}=\lim\limits_{x\rightarrow3}\dfrac{\left(x^2+8\right)\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}\\ =\lim\limits_{x\rightarrow3}\dfrac{\left(x^2+8\right)\left(x+3\right)}{x+1}=\dfrac{51}{2}\).

c) \(\lim\limits_{x\rightarrow-1}\dfrac{x^5+1}{x^3+1}=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(x^4-x^3+x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\lim\limits_{x\rightarrow-1}\dfrac{x^4-x^3+x^2-x+1}{x^2-x+1}=\dfrac{5}{3}\).

d) \(\lim\limits_{x\rightarrow1}\left(\dfrac{2}{x^2-1}-\dfrac{1}{x-1}\right)=\lim\limits_{x\rightarrow1}\left(\dfrac{2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}\right)\\ =\lim\limits_{x\rightarrow1}\dfrac{1-x}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\dfrac{-1}{x+1}=-\dfrac{1}{2}\).

5 tháng 2 2021

em cảm ơn ạ !

 

26 tháng 10 2016

a,(b-a)^2+(a-b)*(3a-2b)-a^2+b^2

=(a-b)^2+(a-b)*(3a-2b)-(a^2-b^2)

=(a-b)^2+(3a-2b)-(a-b)*(a+b)

=(a-b)*(a-b+3a-2b-a-b)

=(a-b)*(3a-4b)

26 tháng 10 2016

b, Đặt x^2-2x+4=a=>x^2-2x+3=a-1

x^2-2x+5=a+1

=>phương trình ban đàu sẽ thành:

(a+1)*(a-1)=8

<=>a^2-1=8

<=>a^2=9

<=>a=3 hoặc a=-3

quay về biến cũ ta có

TH1a=3=>x^2-2x+4=3

<=>x^2-2x+1=0

<=>(x-1)^2=0

<=>x-1=0

<=>x=1

TH2 a=-3=>x^2-2x+4=-3

=>(x^2-2x+1)+6=0

<=>(x-1)^2+6=0

do (x-1)^2>=0 với mọi x=>(x-1)^2+6>0 với mọi x

=> phương trình vô nghiệm

Vậy phương trình có 1 nghiệm là x=1

11 tháng 11 2021

\(a,=4x^2+3xy-y^2+4xy-4x^2=7xy-y^2\\ b,=x^2-9-x^3+3x+x^2-3=-x^3+2x^2+3x-12\\ c,=-2x^2+12x-18+5x^2+4x-1=3x^2+16x-19\\ d,=8x^3+1-3x^3+6x^2=5x^3+6x^2+1\\ e,=\left(3x^2+4x+15x+20\right):\left(3x+4\right)\\ =\left(3x+4\right)\left(x+5\right):\left(3x+4\right)\\ =x+5\\ f,=\left(x^3+4x^2-3x+3x^2+12x-9+3x+3\right):\left(x^2+4x-3\right)\\ =\left[\left(x^2+4x-3\right)\left(x+3\right)+3x+3\right]:\left(x^2+4x-3\right)\\ =x+3\left(dư.3x+3\right)\)

24 tháng 5 2018

cảm ơn bạn nhiều nhé !!!!

17 tháng 10 2021

a: \(\left(2x-1\right)^2-3\left(x-1\right)\left(x+2\right)-\left(x-3\right)^2\)

\(=4x^2-4x+1-x^2+6x-9-3\left(x^2+x-2\right)\)

\(=3x^2+2x-8-3x^2-3x+6\)

=-x+2

b: \(\left(x-2\right)\left(2x-1\right)-3\left(x+1\right)^2-4x\left(x+2\right)\)

\(=2x^2-x-4x+2-3x^2-6x-3-4x^2-8x\)

\(=-5x^2-19x-1\)