K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2019

Giải bài 27 trang 80 Toán 8 Tập 1 | Giải bài tập Toán 8

a) + ΔADC có: AE = ED (gt) và AK = KC (gt)

⇒ EK là đường trung bình của ΔADC

⇒ EK = CD/2

+ ΔABC có AK = KC (gt) và BF = FC (gt)

⇒ KF là đường trung bình của ΔABC

⇒ KF = AB/2.

b) Ta có: EF ≤ EK + KF = Giải bài 27 trang 80 Toán 8 Tập 1 | Giải bài tập Toán 8

(Bổ sung: Giải bài 27 trang 80 Toán 8 Tập 1 | Giải bài tập Toán 8 ⇔ EF = EK + KF ⇔ E, F, K thẳng hàng ⇔ AB // CD)

a: Xét ΔADC có 

E là trung điểm của AD

K là trung điểm của AC

Do đó: EK là đường trung bình của ΔADC

Suy ra: EK//DC và \(EK=\dfrac{DC}{2}\)

Xét ΔABC có 

K là trung điểm của AC

F là trung điểm của BC

Do đó: KF là đường trung bình của ΔABC

Suy ra: KF//AB và \(KF=\dfrac{AB}{2}\)

21 tháng 4 2017

a) Trong ∆ACD có EA = ED, KA = KC (gt)

nên EK là đường trung bình của ∆ACD

Do đó EK = CD/2

Tương tự KF là đường trung bình của ∆ABC.

Nên KF = AB/2

b) Ta có EF ≤ EK + KF (bất đẳng thức trong ∆EFK)

Nên EF ≤ EK + KF = CD/2 + AB/2 = (AB+CD)/2

Vậy EF ≤ (AB+CD)/2

14 tháng 9 2017

27. Cho tứ giác ABCD. Gọi E, F, K theo thứ tự là trung điểm của AD, BC, AC.

a) So sánh các độ dài EK và CD, KF và AB.

b) Chứng minh rằng EF \(\le\dfrac{AB+CD}{2}\)

Bài giải:

a) Trong ∆ACD có EA = ED, KA = KC (gt)

nên EK là đường trung bình của ∆ACD

Do đó EK =\(\dfrac{CD}{2}\)

Tương tự KF là đường trung bình của ∆ABC.

Nên KF = \(\dfrac{AB}{2}\)

b) Ta có EF ≤ EK + KF (bất đẳng thức trong ∆EFK)

Nên EF ≤ EK + KF = \(\dfrac{CD}{2}\) + \(\dfrac{AB}{2}\) = \(\dfrac{\left(AB+CD\right)}{2}\)

Vậy EF ≤ \(\dfrac{\left(AB+CD\right)}{2}\)



6 tháng 9 2016

bài 1 

a) Trong ∆ACD có EA = ED, KA = KC (gt)

nên EK là đường trung bình của ∆ACD

Do đó EK = CD/2

Tương tự KF là đường trung bình của ∆ABC.

Nên KF = AB/2

b) Ta có EF  ≤ EK + KF (bất đẳng thức trong ∆EFK)

Nên EF ≤ EK + KF = CD/2 + AB/2=  (AB +CD)/2

Vậy EF ≤ (AB +CD)/2

29 tháng 12 2014

cả bài này đều sử dụng đường trung bình

 

5 tháng 11 2017

A B C D E K F a) Hình thang ABCD có:

E là trung điểm của AD (1)

F là trung điểm của BC

=> EF là đường trung bình của hình thang ABCD

nên EF// CD

=> EK // CD (2)

Từ (1)(2) => KA = KC

b)  * Xét tam giác ACD có:

EA =ED (gt)

KA = KC (cmt)

=> EK là đường trung bình của tam giác ACD

=>EK = 1/2 CD

=>CD = 6 x 2

 CD= 12 cm

* Tương tự chứng minh KF là đường trung bình của tam giác ABC

=> KF =1/2 AB

=>AB = 2 x 2

AB = 4 cm

24 tháng 9 2015

EK là đtbinh tam giác => EK=1/2 CD, KF=1/2 AB áp dụng Bđt trong tam giác EKF có EF< EK+KF =>EF< 1/2(AB+CD) . Khi K nằm giữa Evà F thì EF= EK+KF = 1/2(AB+CD)​ kết hợp cả 2 => đpcm

a) Xét ΔADC có 

E là trung điểm của AD

K là trung điểm của AC

Do đó: EK là đường trung bình của ΔADC

Suy ra: EK//DC

Xét ΔABC có 

K là trung điểm của AC

F là trung điểm của BC

Do đó: KF là đường trung bình của ΔABC

Suy ra: KF//AB