Tìm giá trị nhỏ nhất
N= x2+2.1/2x+(1/2)2-(1/2)2+10
Giải chi tiết giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2-2x+y^2-4y+7\)
\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+2\)
Vì:\(\left(x-1\right)^2+\left(y-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\forall x\)
Dấu = xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy:GTNN của bt là 2 tại x=1,y=2
\(A=2x^2+y^2+2xy-6x-2y+10\)
\(=\left(\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1\right)+\left(x^2-4x+4\right)+5\)
\(=\left(x+y-1\right)^2+\left(x-2\right)^2+5\ge5\)
Vậy GTNN là A = 5 khi \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
Để pt có 2 nghiệm thì \(\Delta'=m^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\).
Khi đó theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\).
Ta có \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\Leftrightarrow m^2+m-2=0\Leftrightarrow\left(m-1\right)\left(m+2\right)=0\Leftrightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=-2\left(TM\right)\end{matrix}\right.\).
Vậy m = -2.
Bài 2 :
a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = 2
b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)
Dấu ''='' xảy ra khi x = -1
Bài 1 :
a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)
c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
\(P=\frac{\left(\frac{1}{4}x^2-\frac{1}{2}x+\frac{1}{4}\right)+\left(\frac{3}{4}x^2+\frac{3}{2}x+\frac{3}{4}\right)}{x^2-2x+1}=\frac{\frac{1}{4}\left(x-1\right)^2+\frac{3}{4}\left(x+1\right)^2}{\left(x-1\right)^2}=\frac{1}{4}+\frac{\frac{3}{4}\left(x+1\right)^2}{\left(x-1\right)^2}\)
Ta thấy : \(\frac{\frac{3}{4}\left(x+1\right)^2}{\left(x-1\right)^2}\ge0\forall x\) nên \(\frac{1}{4}+\frac{\frac{3}{4}\left(x+1\right)^2}{\left(x-1\right)^2}\ge\frac{1}{4}\forall x\) có GTNN là \(\frac{1}{4}\) tại x = - 1
Vậy \(P_{min}=\frac{1}{4}\) tại \(x=-1\)
\(P=\frac{\left(x^2-2x+1\right)+\left(3x-3\right)+3}{\left(x-1\right)^2}=\frac{\left(x-1\right)^2+3\left(x-1\right)+3}{\left(x-1\right)^2}=1+\frac{3}{x-1}+\frac{3}{\left(x-1\right)^2}\)
đặt \(y=\frac{1}{x-1}\Rightarrow P=1+3y+3y^2=3\left(y+\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
vậy \(MinP=\frac{1}{4}\Leftrightarrow y=-\frac{1}{2}\Leftrightarrow\frac{1}{x-1}=-\frac{1}{2}\Leftrightarrow x=-1\)
a: Ta có: \(A=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=10
\(N=x^2+2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2+\dfrac{39}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{39}{4}\)
\(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}\forall x\)
\(\Rightarrow N_{min}=\dfrac{39}{4}\)