K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2022

\(\sqrt{x+1}\) + \(\sqrt{x+6}\) = 5

\(\sqrt{\left(x+1\right)\left(x-1\right)}\) + \(\sqrt{\left(x+6\right)\left(x-6\right)}\) = 5

x - 1 + x - 6 = 5

2x - 7 = 5

x = 6

7 tháng 8 2022

\(ĐKXĐ:\left\{{}\begin{matrix}x+1\ge0\\x+6\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ge-6\end{matrix}\right.\Leftrightarrow x\ge-1\)

- Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x+6}=b\end{matrix}\right.\left(a\ge0,b\ge\sqrt{5}\right)\)

\(\Rightarrow b^2-a^2=\left(\sqrt{x+6}\right)^2-\left(\sqrt{x+1}\right)=x+6-\left(x+1\right)=5\)

- Ta có hệ phương trình:

\(\left\{{}\begin{matrix}b+a=5\\b^2-a^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+a=5\\\left(b+a\right)\left(b-a\right)=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+a=5\\5\left(b-a\right)=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+a=5\\b-a=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+a=5\\2b=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3+a=5\\b=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x+1}=2\\\sqrt{x+6}=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=4\\x+6=9\end{matrix}\right.\)

\(\Leftrightarrow x=3\left(nhận\right)\)

- Vậy tập nghiệm của pt trên là \(S=\left\{3\right\}\)

24 tháng 11 2021

\(a,\Leftrightarrow x-1=4\Leftrightarrow x=5\\ b,\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\3x+1=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=3\\ \Leftrightarrow x+5=9\\ \Leftrightarrow x=4\left(tm\right)\)

\(d,\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}+1\right)^2}\\ \Leftrightarrow\left|x-2\right|=\sqrt{5}+1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{5}+1\\2-x=\sqrt{5}+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=1-\sqrt{5}\end{matrix}\right.\)

b) Thay x=49 vào A, ta được:

\(A=\dfrac{7-1}{7-5}=\dfrac{6}{2}=3\)

a) Ta có: \(B=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}+\dfrac{4}{x-1}\)

\(=\dfrac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+7\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\)

8 tháng 10 2018

ĐKXĐ : \(x\ge1\)

\(\sqrt{x+3+4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)

\(\Leftrightarrow\)\(\sqrt{x-1+4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=5\)

\(\Leftrightarrow\)\(\sqrt{\left(\sqrt{x-1}+2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=5\)

\(\Leftrightarrow\)\(\left|\sqrt{x-1}+2\right|+\left|\sqrt{x-1}-3\right|=5\)

\(\Leftrightarrow\)\(\sqrt{x-1}+\left|\sqrt{x-1}-3\right|=3\)

+) Với \(\sqrt{x-1}-3\ge0\)\(\Leftrightarrow\)\(x\ge10\) ta có : 

\(\sqrt{x-1}+\sqrt{x-1}-3=3\)

\(\Leftrightarrow\)\(2\sqrt{x-1}=6\)

\(\Leftrightarrow\)\(\sqrt{x-1}=3\)

\(\Leftrightarrow\)\(x-1=9\)

\(\Leftrightarrow\)\(x=10\) ( thỏa mãn ) 

+) Với \(\sqrt{x-1}-3< 0\)\(\Leftrightarrow\)\(x< 10\) ta có : 

\(\sqrt{x-1}-\sqrt{x-1}+3=3\)

\(\Leftrightarrow\)\(3=3\) ( thõa mãn với mọi \(x< 10\) ) 

Vậy \(x\le10\)

Chúc bạn học tốt ~ 

PS : mới lớp 8, sai thì thôi nhé :v 

b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:

\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)

\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)

\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)

16 tháng 7 2021

a) \(Q=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\left(x\ge0,x\ne4,9\right)\)

\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

b) \(\sqrt{x}=\sqrt{6+4\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}=2+\sqrt{2}\)

\(\Rightarrow Q=\dfrac{2+\sqrt{2}+1}{2+\sqrt{2}-3}=\dfrac{3+\sqrt{2}}{\sqrt{2}-1}=\dfrac{\left(3+\sqrt{2}\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

\(=4\sqrt{2}+5\)

c) \(Q=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)

Để \(Q\in Z\Rightarrow4⋮\sqrt{x}-3\Rightarrow\sqrt{x}-3\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{4;5;7;2;1\right\}\Rightarrow x\in\left\{16;25;49;4;1\right\}\)

a) Ta có: \(Q=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

DT
16 tháng 6 2023

\(\left(a\right):2x-7\sqrt{x}+3=0\left(x\ge0\right)\\ < =>\left(2x-6\sqrt{x}\right)-\left(\sqrt{x}-3\right)=0\\ < =>2\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}-3\right)=0\\ < =>\left(2\sqrt{x}-1\right)\left(\sqrt{x}-3\right)=0\\ =>\left[{}\begin{matrix}2\sqrt{x}-1=0\\\sqrt{x}-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{4}\left(TM\right)\\x=9\left(TM\right)\end{matrix}\right.\)

\(\left(b\right):3\sqrt{x}+5< 6\\ < =>3\sqrt{x}< 1\\ < =>\sqrt{x}< \dfrac{1}{3}\\ < =>0\le x< \dfrac{1}{9}\)

\(\left(c\right):x-3\sqrt{x}-10< 0\\ < =>\left(x-5\sqrt{x}\right)+\left(2\sqrt{x}-10\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}-5\right)+2\left(\sqrt{x}-5\right)< 0\\ < =>\left(\sqrt{x}-5\right)\left(\sqrt{x}+2\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}-5< 0\\\sqrt{x}+2>0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}0\le x< 25\\x\ge0\end{matrix}\right.< =>0\le x< 25\)

\(\left(d\right):x-5\sqrt{x}+6=0\left(x\ge0\right)\\ < =>\left(x-2\sqrt{x}\right)-\left(3\sqrt{x}-6\right)=0\\ < =>\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\\ < =>\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\\ =>\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=9\\x=4\end{matrix}\right.\left(TM\right)\)

\(\left(e\right):x+5\sqrt{x}-14< 0\\ < =>\left(x+7\sqrt{x}\right)-\left(2\sqrt{x}+14\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}+7\right)-2\left(\sqrt{x}+7\right)< 0\\ < =>\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}+7>0\\\sqrt{x}-2< 0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.< =>0\le x< 4\)

12 tháng 1 2022

\(a,P=\dfrac{-x+2\sqrt{x}-1+x-2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}:\dfrac{2\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ P=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

\(b,x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\\ \Rightarrow P=\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{5-\sqrt{5}}{5}\\ c,\dfrac{P}{\sqrt{x}}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}}=\dfrac{1}{\sqrt{x}-1}\le\dfrac{1}{0-1}=-1\)

Vậy \(\left(\dfrac{P}{\sqrt{x}}\right)_{max}=-1\Leftrightarrow x=0\)

Ta có: \(\sqrt{\left(5-2\sqrt{6}\right)^2}+\sqrt{\left(5+2\sqrt{6}\right)^x}=10\)

\(\Leftrightarrow\sqrt{\left(5+2\sqrt{6}\right)^x}=10-5+2\sqrt{6}=5+2\sqrt{6}\)

\(\Leftrightarrow\left(5+2\sqrt{6}\right)^x=\left(5+2\sqrt{6}\right)^2\)

hay x=2

a: Thay \(x=6-2\sqrt{5}\) vào A, ta được:

\(A=1-\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=1-\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)

b: Ta có: P=A:B

\(=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{5\sqrt{x}-10}{x-5\sqrt{x}+6}\right)\)

\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-4\sqrt{x}+3-x+4+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)