So sánh (không dùng số hay máy tính bỏ túi)
\(\sqrt{2003}+\sqrt{2005}\)và \(2\sqrt{2004}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\sqrt{ }\)2003 + \(\sqrt{ }\)2005 ; B = 2\(\sqrt{ }\)2004
A² = 2003 + 2005 + 2\(\sqrt{ }\)(2003.2005)
= 4008 + 2\(\sqrt{ }\)[(2004-1)(2004+1)]
= 4008 + 2\(\sqrt{ }\)(2004² - 1) < 2.2004 + 2\(\sqrt{ }\)(2004²) = 4.2004 = B²
\(\Rightarrow\) A < B
Ta có
\(\sqrt{2005}-\sqrt{2004}=\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\)
và \(\sqrt{2004}-\sqrt{2003}=\dfrac{1}{\sqrt{2004+\sqrt{2003}}}\)
Quy về so sánh
\(\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\) với \(\dfrac{1}{\sqrt{2004}+\sqrt{2003}}\)
Khi đó ,ta thấy ngay ở biểu thức thứ nhất lớn hơn mẫu ở biểu thức thứ hai ,các số này đều dương nên suy ra
\(\sqrt{2005}-\sqrt{2004}< \sqrt{2004}-\sqrt{2003}\)
Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) (bạn tự c/m) với a = 2003 , b = 2005
được : \(\frac{\sqrt{2003}+\sqrt{2005}}{2}< \sqrt{\frac{2003+2005}{2}}\)
\(\Rightarrow\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)
Đặt A = \(\sqrt{2003}+\sqrt{2005}\)
B = \(2\sqrt{2004}\)
\(\Rightarrow A^2=2003+2005+2\sqrt{\left(2003.2005\right)}=4008+2\sqrt{\left(2004-1\right)\left(2004+1\right)}\)
\(=4008+2\sqrt{\left(2004^2-1\right)}\)
\(\Rightarrow B^2=4.2004=2.2004+2.2004=4008+2\sqrt{2004^2}\)
mà \(\sqrt{2004^2>\sqrt{ }2004^2-1}\)
\(\Rightarrow B^2>A^2\Rightarrow B>A\Rightarrow2\sqrt{2004}>\sqrt{2003}+\sqrt{2005}\)
Nhớ k cho mình nhé! Thank you!!!
cần lắm một người nào đó giúp mình,hạn chót là ngày mai rồi
a) \(9=6+3=6+\sqrt{9}\)
\(6+2\sqrt{2}=6+\sqrt{8}\)
\(\sqrt{8}< \sqrt{9}\) nên \(6+\sqrt{8}=6+2\sqrt{2}< 6+\sqrt{9}=9\)
b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}=5+\sqrt{24}\)
\(3^2=9=5+4=5+\sqrt{16}\)
\(\sqrt{16}< \sqrt{24}\Rightarrow3^2< \left(\sqrt{2}+\sqrt{3}\right)^2\Rightarrow3< \sqrt{2}+\sqrt{3}\)
c) \(9+4\sqrt{5}=\left(2+\sqrt{5}\right)^2\)
\(16=\left(2+2\right)^2=\left(2+\sqrt{4}\right)^2\)
\(\sqrt{4}< \sqrt{5}\Rightarrow2+\sqrt{4}< 2+\sqrt{5}\Rightarrow\left(2+\sqrt{4}\right)^2=16< \left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)
d) \(\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}=14-\sqrt{132}\)
\(2^2=14-10=14-\sqrt{100}\)
\(\sqrt{100}< \sqrt{132}\Leftrightarrow-\sqrt{100}>-\sqrt{132}\Leftrightarrow14-\sqrt{100}>14-\sqrt{132}\)
\(\Rightarrow2>\sqrt{11}-\sqrt{3}\)
a ) \(\sqrt{2}+\sqrt{3}\) và \(\sqrt{10}\)
Ta có : \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{6}=5+2\sqrt{6}\)\(=5+\sqrt{24}\)
\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)
Vì \(\sqrt{24}< \sqrt{25}\Rightarrow5+\sqrt{24}< 5+\sqrt{25}\)hay \(\sqrt{2}+\sqrt{3}< \sqrt{10}\)
b ) \(\sqrt{2003}+\sqrt{2005}\) và \(2\sqrt{2004}\)
Ta có : \(\left(\sqrt{2003}+\sqrt{2005}\right)^2=2003+2005+2\sqrt{2003.2005}\)
\(=4008+2\sqrt{\left(2004-1\right)\left(2004+1\right)}\)
\(=4008+2\sqrt{2004^2-1}\)
\(\left(2\sqrt{2004}\right)^2=4.2004=2.2004+2\sqrt{2004^2}\)\(=4008+2\sqrt{2004^2}\)
Vì \(4008+2\sqrt{2004^2-1}< 4008+2\sqrt{2004^2}\)=> \(\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)
c ) \(\sqrt{5\sqrt{3}}\)và \(\sqrt{3\sqrt{5}}\)
Ta có : \(\sqrt{5\sqrt{3}}=\sqrt{\sqrt{5^2.3}}=\sqrt{\sqrt{75}}\)
\(\sqrt{3\sqrt{5}}=\sqrt{\sqrt{3^2.5}}=\sqrt{\sqrt{45}}\)
Vì 75 > 45 => \(\sqrt{75}>\sqrt{45}\)hay \(\sqrt{5\sqrt{3}}>\sqrt{3\sqrt{5}}\)
a) \(2\sqrt[3]{3}=\sqrt[3]{2^3}.\sqrt[3]{3}=\sqrt[3]{2^3.3}=\sqrt[3]{24}\)
Ta có : \(24>23\), nên \(\sqrt[3]{24}>\sqrt[3]{23}\)
Vậy \(2\sqrt[3]{3}>\sqrt[3]{23}\)
b) Ta có :
\(11=\sqrt[3]{11^3}=\sqrt[3]{1331}\)
Từ đó suy ra \(33< 3\sqrt[3]{1333}\)
Đặt \(A=\left(\sqrt{2018}+\sqrt{2020}\right)\)
\(\Rightarrow A^2=2018+2\sqrt{2018.2020}+2020=4038+\sqrt{4.2018.2020}=4038+\sqrt{4.\left(2019^2-1\right)}\)
Đặt \(B=2\sqrt{2019}=\sqrt{4.2019}\)
\(B^2=4.2019=2.2019+2.2019=4038+\sqrt{4.2019^2}\)
=> \(\sqrt{4.2019^2}>\sqrt{4.\left(2019^2-1\right)}\)
\(\Rightarrow A>B\Leftrightarrow\sqrt{2018}+\sqrt{2020}>2\sqrt{2019}\)
ai giải hộ mk cái đi!!
Đặt \(A=\sqrt{2003}+\sqrt{2005};B=2\sqrt{2004}\)
\(A^2=2003+2005+2\sqrt{\left(2003.2005\right)}\)
\(=4008+2\sqrt{\left[2004-1\left(2004+1\right)\right]}\)
\(=3008+2\sqrt{\left(2004^2-1\right)}< 2.2004+2\sqrt{\left(2004^2\right)}=4.2004=B^2\\ \Rightarrow A< B\)