K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2015

hồi trước mình làm mỏi tay  mà không ****, giờ không làm nữa âu

12 tháng 11 2015

câu hỏi tương tự nha bs

có lời giải đó

22 tháng 11 2015

ĐẶT d thuộc ƯC (3n+4;5n+1)

Ta có :3n+4chia hết cho d và 5n+1 chia hết cho d nên 5.(3n+34)-3.(5n+1)=(15n+20)-(15n+3)=15n+20-15n-3=(15n-15n)+(20-3)-(15n+3)=15n+20-15n-3=(15n-15n) + (20-3)=17 chia hết cho d 

Vì n thuộc ƯC (3n+4;5n+1)khác 1 thì phải có 3n+4 chia hết cho 17 suy ra 3n+4-34=3n+(-30)=3n-30=3n-3.10=3(n-10)chia hết cho 17 ( vì 43 cx chia hết cho 17)

Ta lại có ƯCLN (3,17)=1 nên n-10 chia hết cho 17 suy ra n-10 thuocj B(17)

DO n<30 nên n-1thuoocj (0;17)

Vậy n thuocj (10,17)

 

23 tháng 5 2015

Đặt d  ƯC(3n+4 ; 5n +1)

Ta có:

3n + 4 chia hết cho d và 5n + 1 chia hết cho d nên 5.(3n + 4) chia hết cho d và  3.(5n + 1) chia hết cho d.

⇒ (15n + 20) - (15n + 3) = 15n + 20 - 15n - 3 = (15n - 15n) + (20 - 3) = 17 chia hết cho d.

Vì n  N suy ra d  {1 ; 17}

Để ƯC(3n+4 ; 5n+1)  1 thì phải có 3n + 4 chia hết cho 17 suy ra 3n + 4 - 34 = 3n + (-30) = 3n - 30 = 3n - 3.10 = 3.(n - 10) chia hết cho 17 (vì 34 cũng chia hết cho 17).

Ta lại có ƯCLN(3 ; 17) = 1 nên n - 10 chia hết cho 17.

 n - 10  B(17)

Do n < 30 nên n  = 10 hoặc n = 27.

                                              Vậy n  {10 ; 17}

23 tháng 5 2015

Giả sử 
(3n + 4 và 5n + 1) = k # 1 
=> (3n + 4 và 5n + 1 - 3n - 4) = (3n + 4 và 2n - 3) = k 
=> (2n - 3 và 3n + 4 - 2n + 3) = (2n - 3 và n + 7) = k 
=> (n + 7 và 2n - 3 - n - 7) = (n + 7 và n - 10) = k 
=> (n + và n + 7 - n + 10) = (n + 7 và 17) = k 
=> k =17 
Suy ra 3n + 4 = 17p 
=> n = (17p - 4)/3 = 5p - 1 + (2p - 1)/3  
Chọn p sao cho 2p - 1 chia hết cho 3 và n < 30 
=> p = 2 và p = 5 
=> n = 10 và n = 27 

Lúc đó 2 số 3n+ 4 và 5n + 1 có ước số chung là 17

17 tháng 5 2015

Đặt d \(\in\) ƯC(3n+4 ; 5n +1)

Ta có 3n + 4 chia hết cho d và 5n + 1 chia hết cho d nên 5.(3n + 4) - 3.(5n + 1) = (15n + 20) - (15n + 3) = 15n + 20 - 15n - 3 = (15n - 15n) + (20 - 3) = 17 chia hết cho d.

Vì n \(\in\) N suy ra d \(\in\) {1 ; 17}

Để ƯC(3n+4 ; 5n+1) \(\ne\) 1 thì phải có 3n + 4 chia hết cho 17 suy ra 3n + 4 - 34 = 3n + (-30) = 3n - 30 = 3n - 3.10 = 3.(n - 10) chia hết cho 17 (vì 34 cũng chia hết cho 17).

Ta lại có ƯCLN(3 ; 17) = 1 nên n - 10 chia hết cho 17.

\(\Rightarrow\) n - 10 \(\in\) B(17)

Do n < 30 nên n - 1\(\in\) {0 ; 17}

Vậy n \(\in\) {10 ; 17}

       Các bạn tham khảo bài này nhá ! 

9 tháng 11 2017

n = 0 nha.

16 tháng 2 2020

Giả sử :
(3n+4, 5n+1) = k # 1
=> (3n + 4, 5n + 1 - 3n - 4) = (3n + 4, 2n - 3) = k
=> (2n - 3, 3n + 4 - 2n + 3) = (2n-3, n +7) = k
=> (n + 7, 2n - 3 - n -7) = (n + 7, n -10) = k
=> (n + 7, n + 7 - n +10) = (n+7, 17)= k
=> k =17
Suy ra 3n + 4 = 17p
=> n = (17p-4):3 = 5p -1 + (2p-1):3

Chọn p sao cho 2p-1 chia hết cho 3 và n < 30
=> p=2 và p=5
=> n =10 và n=27


Lúc đó 2 số 3n+4 và 5n+1 có ước số chung là 17

 LINK MÌNH NHA

16 tháng 2 2020

Cảm ơn bn ★长ØØ★_ ⓫ ℑɧanɧNgⱥ�➻❥♈(▀̿Ĺ̯▀̿ ̿) nhiều nha.

27 tháng 10 2023

Giả sử 
(3n + 4 và 5n + 1) = k # 1 
=> (3n + 4 và 5n + 1 - 3n - 4) = (3n + 4 và 2n - 3) = k 
=> (2n - 3 và 3n + 4 - 2n + 3) = (2n - 3 và n + 7) = k 
=> (n + 7 và 2n - 3 - n - 7) = (n + 7 và n - 10) = k 
=> (n + và n + 7 - n + 10) = (n + 7 và 17) = k 
=> k =17 
Suy ra 3n + 4 = 17p 
=> n = (17p - 4)/3 = 5p - 1 + (2p - 1)/3  
Chọn p sao cho 2p - 1 chia hết cho 3 và n < 30 
=> p = 2 và p = 5 
=> n = 10 và n = 27 

Lúc đó 2 số 3n+ 4 và 5n + 1 có ước số chung là 17

27 tháng 10 2023

Đặt d  ƯC(3n+4 ; 5n +1)

Ta có:

3n + 4 chia hết cho d và 5n + 1 chia hết cho d nên 5.(3n + 4) chia hết cho d và  3.(5n + 1) chia hết cho d.

⇒ (15n + 20) - (15n + 3) = 15n + 20 - 15n - 3 = (15n - 15n) + (20 - 3) = 17 chia hết cho d.

Vì n  N suy ra d  {1 ; 17}

Để ƯC(3n+4 ; 5n+1)  1 thì phải có 3n + 4 chia hết cho 17 suy ra 3n + 4 - 34 = 3n + (-30) = 3n - 30 = 3n - 3.10 = 3.(n - 10) chia hết cho 17 (vì 34 cũng chia hết cho 17).

Ta lại có ƯCLN(3 ; 17) = 1 nên n - 10 chia hết cho 17.

 n - 10  B(17)

Do n < 30 nên n  = 10 hoặc n = 27.

                                              Vậy n  {10 ; 17}