a)Chứng minh rằng: 19120 - 1 chia hết cho 18
b) Chứng minh rằng : 20172016 - 1 chia hết cho 2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(19^{120}-1\)
\(=\left(18+1\right)^{120}-1\)
\(=\left(\left(18+1\right)^{60}\right)^2-1\)
\(=\left(\left(18+1\right)^2+1\right)\left(\left(18+1\right)^2-1\right)\)
\(=\left(\left(180+1\right)^2+1\right)\left(180+1\right)\left(18-1\right)\)
Ta thấy cả 3 tích đều có 18 nên => Tổng của chúng chia hết cho 18 Hay \(19^{120}-1\)chia hết cho 18
Giải:(bài này là đáp án đúng,cô giáo chữa rồi) đề thi HK1
Ta thấy 2015^2016 là một số lẻ suy ra 2015^2016-1 là một số chẵn và 2015^2016+1 cũng là số chẵn
suy ra 2015^2016-1 chia hết cho 2
2015^2016 +1 chia hết cho 2
Suy ra (2015^2016-1)(2016^2016+1) chia hết cho(2.2
Hay A chia hết cho 4
2 Xét 2 STN liên tiếp
(2015^2016-1),2015^2016,(2015^2106+1)
Trong ba số tự nhiên sẽ có một số chia hết cho 3
Ta thấy 2015 ko chia hết cho 3 suy ra 2015^2016 ko chia hết cho 3
Vậy 1 trong 2 số (2015^2016-1) ;(29015^2016+1) sẽ phải chia hết cho 2 suy ra A chia hết cho 3
mà (3,4) là cặp số nguyên tố cùng nhau nên A chia hết cho 3
MÌnh ở Huyện thuận thành xã hoài thượng hân hạnh làm quen
ta có: 2015^2016+1chia hết cho 2015+1=2016, mà 2016 chia hết cho 4 nên A chia hết cho 4
mặt khác: 2015^2016+1chia hết cho 2015+1=2016, mà 2016 chia hết cho 12 nên A chia hết cho 12
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
8a+1 chc 17
17 chc 17
=>8a+1+17 chc17 =>8a+18 chc 17 (đpcm)
tick nha
ai giúp me trước 7/8/2022 thì tui iu cả đời