K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0

a) Xét (O) có

ΔABC nội tiếp đường tròn(A,B,C∈(O))

AB là đường kính

Do đó: ΔABC vuông tại C(Định lí)

b) Xét ΔABC vuông tại C có

\(\sin\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{R}{2R}=\dfrac{1}{2}\)

hay \(\widehat{ABC}=30^0\)

Vậy: \(\widehat{ABC}=30^0\)

c)

Xét ΔOBC có OB=OC(=R)

nên ΔOBC cân tại O(Định nghĩa tam giác cân)

Xét ΔOBC cân tại O có OM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)

nên OM là đường phân giác ứng với cạnh BC(Định lí tam giác cân)

\(\widehat{BOM}=\widehat{COM}\)

hay \(\widehat{BON}=\widehat{CON}\)

Xét ΔBON và ΔCON có 

OB=OC(=R)

\(\widehat{BON}=\widehat{CON}\)(cmt)

ON chung

Do đó: ΔBON=ΔCON(c-g-c)

\(\widehat{OBN}=\widehat{OCN}\)(hai góc tương ứng)

mà \(\widehat{OBN}=90^0\)(NB⊥OB tại B)

nên \(\widehat{OCN}=90^0\)

hay NC⊥OC tại C

Xét (O) có 

OC là bán kính

NC⊥OC tại C(cmt)

Do đó: NC là tiếp tuyến của (O)(Dấu hiệu nhận biết tiếp tuyến đường tròn)

20 tháng 1 2016

oài 3 bài này khó kinh khủng 

16 tháng 12 2021

undefined

câu c thì cơ bản là tui chứng minh hai tam giác bằng nhau (c-c-c), xong rồi tui suy ra hai góc bằng nhau

a: Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

=>ΔABC cân tại A

mà OB=OC

nên OA là trung trực của BC

b: ΔOEF cân tại O

mà OG là trung tuyến

nên OG vuông góc với EF

Xét ΔAGO vuông tại G và ΔHDO vuông tại D có

góc AOG chung

Do đó: ΔAGO đồng dạng với ΔHDO

c: ΔAGO đồng dạng vơi ΔHDO

=>OA/OH=OG/OD

=>OA*OD=OH*OG

=>OH*OG=OE^2

=>ΔHEO vuông tại E

=>HE là tiếp tuyên của (O)

23 tháng 6 2017

Đường tròn